
Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond 

Ben Kenwright  (bkenwright@xbdev.net)    (October 2012) pp 1-11 

 

Dual-Quaternions  
From Classical Mechanics to Computer Graphics and Beyond   

 

Ben Kenwright 
www.xbdev.net 

bkenwright@xbdev.net 

 

Abstract 
This paper presents an overview of the analytical advantages of dual-quaternions and their potential in the areas of robotics, 

graphics, and animation.  While quaternions have proven themselves as providing an unambiguous, un-cumbersome, 

computationally efficient method of representing rotational information, we hope after reading this paper the reader will 

take a parallel view on dual-quaternions.  Despite the fact that the most popular method of describing rigid transforms is 

with homogeneous transformation matrices they can suffer from several downsides in comparison to dual-quaternions.  For 

example, dual-quaternions offer increased computational efficiency, reduced overhead, and coordinate invariance.  We also 

demonstrate and explain how, dual-quaternions can be used to generate constant smooth interpolation between transforms.  

Hence, this paper aims to provide a comprehensive step-by-step explanation of dual-quaternions, and it comprising parts 

(i.e., quaternions and dual-numbers) in a straightforward approach using practical real-world examples and uncomplicated 

implementation information.  While there is a large amount of literature on the theoretical aspects of dual-quaternions there 

is little on the practical details.  So, while giving a clear no-nonsense introduction to the theory, this paper also explains and 

demonstrates numerous workable aspect using real-world examples with statistical results that illustrate the power and 

potential of dual-quaternions. 

 

Keywords: dual-quaternion, transformation, blending, interpolation, quaternion, dual-number 

 

Introduction (Why should we use 

dual-quaternions?) 
Dual-quaternions are a neat mathematical tool that breaks 

away from the norm.  Probably one of their most important 

properties is in classical mechanics since they can 

represent complex problems in a unified compact way.  A 

dual-quaternion combines the linear and rotational 

components together into a single variable that can be 

interpolated, concatenated and transformed using a single 

set of algebraic rules.  While it has been demonstrated that 

quaternions are the best general solution for rotations [1] 

they can only represent half the rigid transformation.  

Since, a full 3D rigid transformation is composed of a 

translational and rotational component, which is 

traditionally managed as a 4x4 homogenous matrix.  

However, the matrix contains a great deal of overhead and 

is difficult to interpolate between transforms.  

Alternatively, the transformations can be managed using 

two independent components (e.g., translation vector and a 

quaternion).  Therefore, dual-quaternions take us in a 

different direction and present us with a unified component 

that presents us with a huge number of advantages.   

In a nutshell: 

 They combine rotation and translation into a unified 

state variable 

 They are a compact representation (8 scalars) 

 They are easily converted to other forms (e.g., 

matrices) 

 They can be interpolated easily without ambiguity or 

gimbals' lock 

 They are computationally efficient (comparable with 

matrices and quaternions) [2][3] 

 They can be integrated into a current system with little 

disruption (i.e., matrix alternative) 

 They present a single invariant coordinate frame to 

representation rigid transforms [4] 

Dual-quaternions are an algorithmically simple and 

computationally efficient approach of representing rigid 

transforms (i.e., rotation and translation).  They are used in 

the same way as quaternions but provide the added 

advantage of encapsulating both translation and rotation 

into a unified state that can be concatenated and 

interpolated effortlessly.  In fact, we believe that the reader 

after reading this paper will be sufficiently familiar with 

how dual-quaternion algebra works, and how it can be 

used in practical situations, to begin to appreciate the 

enormous potential dual-quaternions can offer, both for the 

graphical community but also in other areas of research. 

Overview (What we need to know) 
Dual-quaternions are a combination of dual-number theory 

and quaternion mathematics.  Whereby, to have a good 

understanding of how we can exploit dual-quaternions to 

our advantage, we need to understand the basics of 

quaternions and dual-number theory.  Hence, this paper 

begins by explaining the fundamental components of dual-

quaternions to help establish a common ground for readers, 

after which, we then focus on dual-quaternions and the 

applicability for representing transformations both 

computationally and dynamically (e.g., calculating 

differences and interpolating). 



Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond 

Ben Kenwright  (bkenwright@xbdev.net)    (October 2012) pp 2-11 

 

Basically, a dual-quaternion is the concatenation of 

quaternion and dual-number theory (see Figure 1). 

 
Figure 1: Dual-Quaternions Components. 

To avoid confusion and enable the reader to easily 

distinguish a quaternion from a dual-quaternion we use 

two discernible symbols to identify them (see Equation 1). 

 
( )

( )

Quaternion q

Dual Quaternion 
 1 

An overview of both the quaternion and dual-quaternion 

components is shown in Figure 2.  While a quaternion 

consists of four scalar values, a dual-quaternion consists of 

eight scalar values.  However, a quaternion can only 

represent rotation, while a dual-quaternion can represent 

both rotation and translation. 

Dual-quaternions are a valuable tool that can be added to 

an individual's library to achieve a particular task, e.g., 

rigid hierarchy concatenation, interpolation, character 

skinning.  They operate similar to existing methods (i.e., 

matrices) and can be transformed to and from other forms 

easily (i.e., quaternions, matrices) which enables them to 

be integrated or exchanged with little disruption into a 

system to gain their rewards.  For a beginners introduction 

to dual-quaternions with an emphasis on comparison 

between diverse methods (e.g., matrices and Euler angles) 

and how to go about implementing a straightforward 

library I refer the reader to the paper by Kenwright [3]. 

Quaternion Algebra 
While walking with his wife in 1843, Sir William 

Hamilton [5] gave birth to a revolutionary new concept 

that later became known as Quaternions.  While it took 

some time for quaternions to be accepted, they eventually 

demonstrated themselves as being the most competent, 

memory efficient, ambiguity-free method of representing 

rotations.  Furthermore, since quaternions are the 

foundation upon which dual-quaternions are built it comes 

as no shock, and is quite understandable, that these 

properties are inherited.  Nevertheless, to ensure the reader 

is truly able to understand the potential of dual-quaternions 

it is essential to have a good understand of its underpinned 

parts work (i.e., quaternions and dual-numbers).  

Furthermore, once the reader understands how quaternions 

work, it should be trouble-free and straightforward to see 

how dual-quaternions operate due to their likeness. 

A quaternion is represented by two fundamental parts, a 

scalar real part (w) and an imaginary vector part (

, ,x y zv ).  In practice we are only concerned with a unit-

quaternion since they offer the most benefits and represent 

the rotation on a 4D unit-hypersphere.  While the majority 

of people are familiar with the decomposition and 

principles of quaternions, there can, however, be a 

deficiency in the practical considerations. 

 =(w,x,y,z)=(w, )q v  2 

The fundamental mathematical operations are defined for 

quaternions (i.e., addition and multiplication of quaternions 

and the multiplication of a quaternion by a scalar).   

Quaternion from Axis-Angle 

Given an angle and axis of rotation, we can construct a 

quaternion using Equation 3. 

 

ˆˆ cos , sin
2 2

cos , sin , sin , sin
2 2 2 2

w x x y y z z

q

or

q q n q n q n

 

   

    
     

    

       
          

       

n

 

3

 

where  is the angle and n̂ is a unit-vector representing 

the axis of rotation. 

While it is recommended that you consistently use 

quaternions for rotation, we can, however, rewrite 

Equation 3 to give us the axis-angle from the quaternion to 

aid in visualizing angle-axis differences as shown in 

Equation 4. 

 

12cos ( )

, ,

sin sin sin
2 2 2

w

yx z

x y z

q

qq q
n n n



  



  
     
     
     

 4 

Quaternion
Mathematics

Dual-Number
Theory

Dual-Quaternions

 

Figure 2: Visual Overview of Quaternion and Dual-Quaternion Components. 

 

q = w + ix + jy + kz 

 =  q  + q

Real Complex 

4 scalar variables 

8 scalar variables 

Real Dual-Part 

Imaginary

Dual-Operator

Quaternion 

Dual-Quaternion 

r d 



Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond 

Ben Kenwright  (bkenwright@xbdev.net)    (October 2012) pp 3-11 

 

In practice, if you do decide to convert to the axis-angle 

representation, you should ensure the quaternion is always 

a unit-quaternion and be aware of the divide by zero 

causality that may occur (i.e., sin
2

 
 
 

 is zero). 

Quaternion Vector Transformation 

The quaternions transformation can be applied to a 3D 

vector coordinate by means of multiplication.  Whereby, to 

transform a vector position by a quaternion we simply 

convert the vector to a quaternion (i.e., the imaginary part 

is the vector position, and the scalar real part zero) and 

multiply it by the quaternion transform and its conjugate, 

as shown in Equation 5.  Optionally, we can convert the 

quaternion transform to a matrix with little or no extra 

work for systems that operate with matrices (e.g., 

transforms are done on the GPU using matrices).  

 
1ˆ ˆ'p qpq  5 

where 

 q̂  is a unit-quaternion representing the rotation 

transform 

 
1q̂
 is a unit-quaternion that represents the inverse 

of the rotation quaternion 

 p  is the 3D vector point in quaternion form (i.e., 

(0, )p  v  with ( , , )x y zv v vv ) 

 'p  is the 3D transformed vector point in 

quaternion form (i.e., ' (0, )p  v ) 

However, it is extremely important to note that for a unit-

quaternion the inverse is the same as the conjugate.  This is 

due to the mathematical and computational efficiency by 

which the conjugate is calculated.  The conjugate of a 

quaternion is simply the negation of the vector component 

(shown in Equation 6). 

 
1 * ( , )q q w   v  6 

Quaternion to Matrix 

Due to the popularity of matrices, it is vital to be able to 

transform a quaternion to matrix form and vice-versa.  A 

quaternion can be transformed to a matrix using little more 

than multiplications and additions as shown in Equation 7. 

 

2 2

2 2

2 2

1-2(y +z ) 2(xy+zw) 2(xz+yw)

2(xy+zw) 1-2(x +z ) 2(yz+xw)

2(xy+yw) 2(yz+xw) 1-2(x +y )

q

 
 

  
 
 

M  7 

where qM is a matrix equivalent of the quaternion q, and 

x, y, z and w represent the elements of the quaternion. 

Quaternion Addition 

Adding two quaternions together is accomplished by 

simply summing the individual components together as 

shown in Equation 8. 

 0 1 0 1 0 1 0 1 0 1( , , , )w w x x y y z zq q q q q q q q q q       8 

Quaternion Multiplication 

Quaternion multiplication is analogous to matrix 

multiplication; whereby, multiplying quaternions together 

is equivalent to combining their transforms.  For example, 

when two quaternions are multiplied together it is 

equivalent to the first quaternion being rotated by the axis 

and angle of the second quaternion.  However, quaternion 

multiplication is non-commutative (i.e., order of 

multiplication matters) but can be simplified by being 

represented using the dot and cross product (shown in 

Equation 9). 

 

0 1 0 0 1 1

0 1 0 1 0 1 1 0 0 1

( )( )

( ) ( )

w w

w w w w

q q q q

q q q q

  

      

v v

v v v v v v

q q

q q q q q q

 

9

 

where
0wq  and 

1wq  represent the real scalar components of 

each quaternion and, 
0v

q and 
1v

q represent the vector 

component of each quaternion. 

Quaternion Difference 
Since each quaternion represents an axis-angle, then 

multiplying two quaternions together is equivalent to 

transforming one quaternion by another.  Hence, it should 

be obvious, that we can use this to determine differences 

between quaternions.  If both quaternions are the same, and 

we multiply one by the inverse of itself, it will cancel out 

(see Equation 10) and give us an identity quaternion. 

 
1ˆ ˆ 1qq   10 

So if we have two quaternions, we simply multiply one by 

the inverse to get the difference between them (Equation 

11).  It is vital to remember that the inverse of a unit-

quaternion is the same as the conjugate. 

 
1ˆ ˆ ˆ

diff A Bq q q   11 

For example, a simplified numerical example of the 

difference between two quaternions is shown in Equation 

12. 

 
* 1

1

ˆ: 0, 0,0,1

ˆ: , 0,0,1

0 0
ˆ cos , 0,0,1 sin 1,0,0,0

2 2

ˆ cos , 0,0,1 sin 0,0,0,1
2 2

ˆ ˆ 0,0,0, 1

ˆ ˆ ˆ (1)(0) (0,0,0) (0,0, 1),

(1)(0,

A

B

B B

diff A B

A n

B n

q

q

q q

q q q



 

 





  

  

    
         

    

    
         

    

    

    

0, 1) (0)(0,0,0) (0,0,0) (0,0, 1)

0,0,0, 1

ˆ ˆ: , 0,0, 1diffq n 

     

  

   

 12 

To help visualize the result for the example in Equation 12, 

imagine comparing the difference between two scalar 

numbers A and B (e.g., 0 and n).  Then the difference, A-B 



Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond 

Ben Kenwright  (bkenwright@xbdev.net)    (October 2012) pp 4-11 

 

= (0 - n) = -n, which is analogous to what we calculated in 

the example.  

Quaternion Spherical Linear Interpolation (SLERP) 

Quaternion spherical linear interpolation is the 

transformation along the surface of the 4D unit-

hypersphere. 

Starting with the well known exponential function from 

complex numbers it can be shown that in Equation 13. 

 cos sinie i     13 

Then we can equate our quaternion and represent it as an 

exponential given by Equation 14. 

 cos sinq e    v
v  14 

where 
2


  and v is a unit vector (noting that 2 1 v ). 

We can then write the quaternion in the form (Equation 

15): 

 ˆcos( ) sin( )tq t t   v  15 

Then the Slerp expression is given by Equation 16. 

 
1

0 1 0 0 1( , : ) ( )tSLERP q q t q q q  16 

For example, let us consider two very simple cases when 

t=0 and t=1 

0

0

1 1 0

0 0 1 0 0 1 0 0

0

cos( ) sin( )

cos(0) sin(0)

1

( ) ( ) (1)

t

t

t

q t t

q

q

q q q q q q q q 



   

 



  

v

v  

and 

1

1 1 1 1

0 0 1 0 0 1 0 0 1 1 1

1

cos( ) sin( )

cos( ) sin( )

( ) ( ) ( ) (1)

t

t

t

q t t

q

q q q q q q q q q q q  



   

   

   

v

v

 

 

An alternative, and more popular, representation of 

Equation 16 can be calculated using a geometric approach 

and is shown in Equation 17 (for a more detailed 

description see Shoemake [1]). 

 
 

0 1 0 1

sin (1 ) sin( )
( , : )

sin( ) sin( )

t t
SLERP q q t q q

 

 


   17 

Dual-Number Theory 
Clifford [6] published his intriguing work on dual-numbers 

in 1873, and provided us with a powerful tool for 

facilitating the analysis of complex systems (e.g., 

mechanical, geometric).  In fact, it was not long before 

they found a place in the movement of rigid bodies [7][8] 

and later in geometry [9].  The relevant formalism that was 

developed and what we primarily make use of in this paper 

is the screw calculus that allows the unification of 

translation and rotation. 

The definition and properties of a dual-number are given in 

Equation 18.  Dual-numbers are akin to complex numbers.  

However, whereas complex numbers have a real-part and 

an imaginary-part and dual-numbers have a real-part and a 

dual-part.  

 
2 0 0z r d with but       18 

where  is known as the dual-operator, r is the real-part 

and, d the dual-part. 

Dual-Number Addition 

 ( ) ( ) ( ) ( )A A B B A B A Br d r d r r d d          19 

Dual-Number Multiplication 

 

2

2

( ) ( )

( ) ( 0)

A A B B A B A B B A A B

A B A B B A

r d r d r r r d r d d d

r r r d r d remember

    

 

     

   

 

20 

Dual-Number Division 

 2

2 2

( ) ( ) ( )

( ) ( ) ( )

( )

( )

A A A A B B

B B B B B B

A B B A A B

B

A B B A A B

B B

r d r d r d

r d r d r d

r r r d r d

r

r r r d r d

r r

  

  





  


  

 



 

 21 

Dual-Number Differentiation 

From elementary calculus principles shown in Equation 

22. 

 
0

( ) ( )
( ) lim

x

d x x x
x

dx x





 


s s
s  22 

We use Taylor series to find the differentiable (Equation 

23). 

 

2 3

2

( ) ( ) ( )
( ) ( ) ( ) ( ) ...

1! 2! 3!

( )
( ) 0 0 .... ( , 0)

1!

( ) ( )

A A A

A A A A A A

A

A A

A A A

f r f r f r
f r d f r d d d

f r
f r d as

f r f r d

   

 



  
     


     

 

 

23 

Remarkably, due to the condition 
2 0  , we end up with 

an extremely elegant solution. 

For a more in-depth explanation of the rationale behind 

dual-number theory see Keler [10] or Pennestr et al [11]. 

Dual-Quaternion Algebra 
The dual-quaternion is an extension of dual-number theory 

whereby the numbers for the dual-number equation are 

represented by quaternions.  Remarkably, the dual-

quaternion algebra that results is very straightforward and 

elegant and provides us an algebraically compact and 



Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond 

Ben Kenwright  (bkenwright@xbdev.net)    (October 2012) pp 5-11 

 

efficient system for solving otherwise complex problems.  

For example, we can represent a rigid transforms with 

eight scalar variables; we can combine transforms 

effortlessly through concatenation, and we are able to 

produce smooth constant interpolation between rigid 

transformations.  As shown in Figure 2, the dual-

quaternion is decomposed into two parts the real part and 

the dual-part. 

Dual-Quaternion Identity 

The identity of a dual-quaternion is shown in Equation 24 

and is analogous to a quaternion identity.  Therefore, any 

dual-quaternion that is multiplied with an identity dual-

quaternion remains unchanged.  To define an identity dual-

quaternion we set the first scalar value to 1 and the other 

seven scalar values are all 0. 

 [1,0,0,0][0,0,0,0]   24 

Dual-Quaternion from Position and Rotation 

To construct a unit-dual quaternion from a rotation and a 

translation we use Equation 25.  We construct the dual-

quaternion from a pair of quaternions that represent the 

rotation and translation. 

 
1

2

r d

r

d

q q

q

q

  





r

t r

 
25 

where r is a unit quaternion representing the rotation and t

is a quaternion describing the translation.  The individual 

elements of the two quaternions from Equation 25 are 

shown in Equation 26.  

 
[cos( ), sin( ), sin( ), sin( ) ]

2 2 2 2

[0, , , ]

x y z

x y z

   




r n n n

t t t t

 26 

 

where n is the axis of rotation,  is the angle of rotation, 

and , ,x y zt t t is the position in Cartesian coordinates. 

For example, if we want to construct a dual-quaternion that 

only has a rotation we have: 

 
[cos( ), sin( ), sin( ), sin( ) ][0,0,0,0]

2 2 2 2
x y z

   
  n n n

 

27 

and, if we want to construct a dual-quaternion that only has 

a translation we have: 

 [1,0,0,0][0, , , ]
2 2 2

yx z 
tt t

 28 

Comparable to matrices and quaternions we can 

concatenate dual-quaternion transformations using 

multiplication.  Hence, you can create a pure rotation dual-

quaternion and a pure translation dual-quaternion and 

multiply them together to form a combined dual-

quaternion that possesses both the translation and rotation 

components; however, be aware that the multiplication 

order is important. 

Dual-Quaternion to Position and Rotation 

We can extract the position and rotation from a dual-

quaternion.  In reverse to Equation 25 that created a dual-

quaternion from a position and rotation, we conversely 

extract the position and rotation using Equation 29. 

 
*2

r d

r

d r

q q

q

q q

  





r

t

 29 

Dual-Quaternion Addition 

The addition of dual-quaternions is one of the simplest 

operations since we only need to add each individual 

component together (see Equation 30). 

 

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 0 1 1 2 2 3 3

4 4 5 5 6 6 7 7

( ) ( )

( ) ( )

(( ) ( ) ( ) ( ))

(( ) ( ) ( ) ( ))

A

B

A B

a a i a j a k a a i a j a k

b b i b j b k b b i b j b k

a b a b a b a b

a b a b a b a b

 

 

 



       

       

         

      

 

30 

Dual-Quaternion Multiplication 

Due to dual-numbers requiring 2 0   results in the 

multiplication of dual-quaternions being a very neat and 

tidy operation (see Equation 31).  Hence, the resulting 

dual-quaternion multiplication can be broken down into 

three quaternion multiplications and a quaternion addition 

operation. 

  

0 1

2 3

0 1 2 3

0 2 0 3 1 2

( )( )

( )

A

B

A B

q q

q q

q q q q

q q q q q q

 

 

   



 

 

   

  

 31 

Dual-Quaternion Conjugate 

The dual-quaternion conjugate is essentially an extension 

of the quaternion conjugate, and is given by Equation 32. 

 
* * *q q    32 

Dual-Quaternion Magnitude 

A dual-quaternion multiplied by its conjugate gives the 

magnitude squared and hence the square root of this is the 

scalar magnitude length (see Equation 33). 

 *|| ||   33 

It is crucial to note that a unit dual-quaternion has a 

magnitude of 1.  Hence, we can say that the magnitude of a 

unit dual-quaternion multiplied by its conjugate must equal 

1. 



Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond 

Ben Kenwright  (bkenwright@xbdev.net)    (October 2012) pp 6-11 

 

 
*ˆ ˆˆ|| || || || 1    34 

Dual-Quaternion Vector Transformation 

Equivalent to a quaternion a dual-quaternion can transform 

a 3D vector coordinate as shown in Equation 34.  Note that 

for a unit-quaternion the inverse is the same as the 

conjugate. 

 
1ˆ ˆ'p p    35 

where 

   is a dual-quaternion representing the transform 

 
1 
 is a dual-quaternion that is the inverse of the dual-

quaternion   

 p  is a dual-quaternion representing the rigid 

transform (e.g., 3D vector point 

(1,0,0,0) (0, , )x y zp v v v   ) 

 'p is a dual-quaternion with the resulting transform. 

Plücker Coordinates 

Plücker coordinates [12] are used to create Screw 

coordinates which are an essential technique of 

representing lines.  We need the Screw coordinates so that 

we can re-write dual-quaternions in a more elegant form to 

aid us in formulating a neater and less complex 

interpolation method that is comparable with spherical 

linear interpolation for classical quaternions.   

The Definition of Plücker Coordinates: 

1. p is a point anywhere on a given line 

2. l is the direction vector 

3. m = p l is the moment vector 

4. ( , )l m are the six Plücker coordinate 

We can convert the eight dual-quaternions parameters to 

an equivalent set of eight screw coordinates and vice-versa.  

The definition of the parameters are given in Equation 36. 

 

( , , , )

( ) ( )

r d

r r d d

screw parameters d

dual quaternion q q

w w









  

   

l m

v v

 36 

where in addition to l representing the vector line direction 

and m the line moment, we also have d representing the 

translation along the axis (i.e., pitch) and the angle of 

rotation  . 

Converting to and from a dual-quaternion and its screw 

parameters is shown in Equation 37 and Equation 38 (see 

Daniilidis [13] for details). 

 

12cos ( )

1
2

1

1

2

r

d

r r

r

r r

r

d

r r

dual quaternion screw parameters

w

d w

d w

 

 



 

 
  

 
 

 
  
 

v v

l v
v v

m v l
v v

 

37 

and 

 

cos
2

sin
2

sin
2 2

sin cos
2 2 2

r

r

d

d

screw parameters dual quaternion

w

d
w

d







 

 

 
  

 

 
  

 

 
   

 

   
    

   

v l

v m l

 
38 

Dual-Quaternion Power 

We can write the dual-quaternion representation in the 

form given in Equation 39 (see Daniilidis [14] for details). 

 

ˆ cos ( )sin
2 2

ˆ ˆ
ˆcos sin

2 2

d d   
 

 

    
     

   

   
       

   

l m

v

 39 

where  

 ̂ is a unit dual-quaternion 

 v̂ is a unit dual-vector ˆ  v l m  

 ̂ is a dual-angle ˆ d     

The dual-quaternion in this form is exceptionally 

interesting and valuable as it allows us to calculate a dual-

quaternion to a power.  Calculating a dual-quaternion to a 

power is essential for us to be able to easily calculate 

spherical linear interpolation.  However, instead of purely 

rotation as with classical quaternions, we are instead now 

able to interpolate full rigid transformations (i.e., rotation 

and translation) by using dual-quaternions.  

 
ˆ ˆ

ˆ ˆcos sin
2 2

t t t
 


   

       
   

v  40 

Dual-Quaternion Screw Linear Interpolation 
(ScLERP) 

ScLERP is an extension of the quaternion SLERP 

technique, and allows us to create constant smooth 

interpolation between dual-quaternions.  Similar to 



Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond 

Ben Kenwright  (bkenwright@xbdev.net)    (October 2012) pp 7-11 

 

 

Figure 3: Visual comparison between linear and dual-quaternion weighting for vertex skinning. 

 

Weighting 

1.0 

0.0 

0.5 

0.5 

0.7 1.0 1.0 1.0 1.0 .... 

0.3 0.0 1.0 

0.0 

.... .... 

.... 0.0 0.0 0.0 0.3 

0.7 1.0 

Transform 

A 

Transform 

B 

Weight B 

Weight A

Transform 

A 

Transform 

B 

Transform 

A 

Transform 

B 

Linear Dual-Quaternion 

quaternion SLERP we use the power function to calculate 

the interpolation values for ScLERP shown in Equation 41. 

 
1ˆ ˆ ˆ ˆ ˆ( , : ) ( )t

A B A A BScLERP t      41 

where ˆ
A and ˆ

B are the start and end unit dual-quaternion 

and t is the interpolation amount from 0.0 to 1.0. 

The implementation of ScLERP involves first using 

Equation 37 to convert the dual-quaternion parameters to 

screw parameters, so we can calculate the power function 

with Equation 40.  Afterwards, we use Equation 38 to 

convert back to a dual-quaternion to complete the 

calculation and give the resulting interpolated result. 

 

( , , , )

( ) ( )

r d

r r d d

screw parameters d

dual quaternion q q

w w









  

   

l m

v v

 42 

Basic Un-Optimized Implementation Steps of ScLERP (for 

Equation 41): 

1. Calculate Inverse of A (i.e., Conjugate of A) 

2. Multiply Inv(A) and B 

3. Calculate Screw Parameters for result Inv(A)B 

4. Calculate to the power of 

5. Convert screw parameters form back to the 

classical dual-quaternion form 

6. Multiply with A to get the answer 

(For example, see Listing 1 for a practical implementation 

example). 

 

Alternatively, a fast approximate alternative to ScLERP 

was presented by Kavan et al. [15] called Dual-Quaternion 

Linear Blending (DLB).  Furthermore, dual-quaternions 

have gained a great deal of attention in the area of 

character-based skinning.  Since, a skinned surface 

approximation using a weighted dual-quaternion approach 

produces less kinking and reduced visual anomalies 

compared to linear methods by ensuring the surface keeps 

its volume (for example, see Figure 3). 

Dual-quaternions eliminate skin collapsing artefacts and 

while they are slightly slower than the linear blended 

skinning method they are, however, graphical processor 

unit (GPU) friendly.  Furthermore, they are simple to 

integrate into a 3D engine and cause very little disruption 

since the same rigging as standard linear blending skinning 

can be used. 

Interpolation 
In general, one of the greatest advantages of using 

quaternions and dual-quaternions over any other method is 

their ability to interpolate smoothly between transforms.  

Naively, two values can represent the start and end, and a 

scalar constant represents the interpolation amount (scalar 

ratio is from 0.0 to 1.0).  For a straight-line vector we can 

treat each component separately and use a parametric 

equation shown in Equation 43.  This has the added 

advantage of being computationally fast and simple. 



Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond 

Ben Kenwright  (bkenwright@xbdev.net)    (October 2012) pp 8-11 

 

 ( , : ) ( )LERP a b t b a b t    43 

where a and b represent the start and end value and t the 

in-between ratio. 

In fact, for small changes we can use Equation 43 to 

interpolate between quaternions and dual-quaternions.  

However, as the quaternion and dual-quaternion become 

more dissimilar there is a greater error and the intermediate 

steps become less smooth and less correct.  The 

intermediate steps between the start and end do not 

represent a unit-quaternion rotation or dual-quaternion 

rotation.  Hence, we need to re-normalize the value at each 

step to ensure it falls on the unit-hypersphere.  Most 

importantly, though, is that the interpolation rate is not 

constant.  We can reduce the error and make the linear 

interpolation approximation more tolerable by normalizing 

the values between steps.  This is known as Normalized 

Linear Interpolation (NLERP) and has the added advantage 

of ensuring that the intermediate values are always of unit-

length (see Equation 44).  Again, it should be stressed that 

the linear interpolation approximation is only suitable for 

small changes. 

 
( )

( , : )
|| ( ) ||

A B A

A B

A B A

q + q - q t
NLERP q q t

q + q - q t
  44 

where a is the start, b is the end and t is the interpolation 

amount (i.e., 0.0 to 1.0). 

While it has numerous problems for both quaternions and 

dual-quaternions, it is computationally fast and easy to 

implement and can, however, give reasonably good 

approximations for small interpolations.  The trouble is, 

quaternions and dual-quaternions do not travel along 

straight-line trajectories.  However, we can use an 

alternative interpolation method that follows the unit-

hypersphere sphere.  This is accomplished by interpolation 

along the unit-hypersphere to produce a constant and 

smooth rate of change.  Dual-quaternions can use the 

exponential representation similar to quaternions to 

generate an interpolation scheme to produce constant 

smooth interpolation. 

Shortest or Longest Interpolation Path 

Contrary to popular belief, a quaternion and dual-

quaternion by default will not take the shortest path 

between points when interpolated.  This is because a 

quaternion can represent the same orientation using two 

different representations, and consequently a dual-

quaternion.  This means that both quaternions and dual-

quaternions do not offer a unique representation of an 

orientation or transformation (i.e., there are two).  The 

difference between the two representation becomes 

apparent during interpolation and provide a method for 

determining the shortest or longest path to be taken during 

interpolation. 

The interpolation direction can be calculated by examining 

the angle between the two transforms.  If the angle 

between the two quaternions (or dual-quaternions) is 

greater than 
2


 then the interpolation will take the "longest 

path".  We can detected easily in practice by taking the dot 

produce of the two quaternions (for a dual-quaternion we 

use the quaternion for the rotation).  If the dot product is 

less than zero then the longest path will be taken.  

However, if we want to prevent the longest path from 

being taken we simply negate all the elements for the 

quaternion or dual-quaternion before interpolating.  

Likewise, if we desire the longest path we can check that 

the dot product is greater than zero before negating the 

quaternion or dual-quaternion. 

Catmull-Rom Spline-Based Interpolation 
For irregular spaced key-frame data, we can exploit the 

Catmull-Rom spline-based vector interpolation function 

and dual-quaternions algebra as a method for generating a 

unified, smooth, continuous trajectory path.  

Eradication of the Square Root 
We can optimize some operations by eradicating the 

square root overhead.  Since both quaternions and dual-

quaternions are normalized the same way as vectors (see 

Equation 45), we can identify cases whereby an element is 

multiplication with another element to cancel out the 

square root. 

 ˆ
|| ||

q q
q

q q q
 


 45 

However, the multiplication of two quaternion elements 

results in the square root being redundant.  For example, 

when we construct a matrix from a quaternion (as shown in 

Equation 7) we multiply pairs of elements.  This can be 

used to cancel out the necessity to normalize the result as 

shown in Equation 46. 

 ˆ ˆ
y x yx

x y

q q qq
q q

q qq q q q
 

 
 46 

Performance Comparison 
It can be shown without difficulty that in general a dual-

quaternion takes less operations to compute a general 

transform concatenation compared to a matrix (see Table 

1).  

 

Matrix4x4 : 64mult + 48adds 

Matrix4x3 : 48mult + 32adds 

DualQuaternion : 42mult + 38adds 

 

Table 1:  Computational cost of combining matrices and 

dual-quaternions. 

Furthermore, for rigid skeletal animations, the computation 

of world space transforms in addition to the overhead cost 

of transferring the data to the graphics processing unit 

(GPU) can be noticeably better.  For example, to transfer 

the transforms to the GPU each frame a dual-quaternions 

requires only eight floats compared to a 3x4 matrix that 

requires twelve per joint. 



Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond 

Ben Kenwright  (bkenwright@xbdev.net)    (October 2012) pp 9-11 

 

Inverse Kinematics 
The conventional method for representing and 

concatenating links together in hierarchical systems is the 

Denavit-Hartenberg [16] matrix convention, and while 

Wang and Ravani [17] proposed an alternative more 

efficient forward recursion method for kinematic 

equations, we propose using dual-quaternions, since they 

offer an analogous alternative that is numerically stable 

and computationally efficient.  Dual-quaternions have 

shown promising results for providing singularity-free 

solutions for inverse kinematic (IK) problems with 

nonlinearities [18].  It is clearly an advantage to use dual-

quaternions for rigid hierarchies since each dual-

quaternion can be concatenated easily, interpolated 

smoothly and provide rigid transform comparisons 

effortlessly.  

Porting to Dual-Quaternion 
Converting an exiting matrix scheme to a dual-quaternion 

system is straightforward since much of the operations 

(i.e., concatenation of transforms) are done the same way.  

For example, the concatenation of transforms with a 

matrices and dual-quaternions: 

Matrix 

 03 0 1 2 3M M M M M   

Dual-Quaternion 

 03 0 1 2 3       

where the subscript represents the transform, while matrix 

transform 
0M  corresponds the dual-quaternion transform 

0 .  However, unlike matrices, dual-quaternions provide 

an additional repertoire of valuable functions to easily 

compare and interpolate between transforms.  

Conclusion and Final Thoughts 
This paper has attempted to introduction the reader to the 

practical potential of dual-quaternions and their advantages 

in solving kinematic problems (i.e., systems with rotational 

and translational properties).  The fundamental features 

and workings of dual-quaternions have been outlined.  It 

has also been shown, that in general, they provide a 

compact and efficient tool for representing rigid 

transformation (i.e., simultaneously rotation and 

translation). 

In practicality, a dual-quaternion is a tool like any other 

tool to be used to solve a problem.  It is a novel and fresh 

alternative to the de-facto method of matrices with 

numerous benefits that can be integrated into a system with 

little disruption or complication.  It is hoped that the reader 

after reading this paper will go forwards and implement a 

straightforward dual-quaternion class to enable them to 

explore the potential and decide for themselves if they are 

the right tool for the job.  

References 
[1] K. Shoemake, “Animating rotation with quaternion 

curves,” In Proceedings of the 12th annual conference on 

Computer graphics and interactive techniques. ACM 

Press, pp. 245–254, 1985. 

[2] M. Schilling, “Universally manipulable body models—

dual quaternion representations in layered and dynamic 

MMCs,” Autonomous Robots, vol. 30, no. 4, pp. 399–425, 

2011. 

[3] B. Kenwright, “A Beginners Guide to Dual-Quaternions: 

What They Are , How They Work, and How to Use Them 

for 3D Character Hierarchies,” The 20th International 

Conference on Computer Graphics, Visualization and 

Computer Vision, no. June 26–28, pp. 1–10, 2012. 

[4] Q. Ge, A. Varshney, J. P. Menon, and C. F. Chang, 

“Double quaternions for motion interpolation,” in 

Proceedings of the ASME Design Engineering Technical 

Conference, 1998. 

[5] S. W. R. Hamilton, “On quaternions; or on a new system 

of imaginaries in algebra,” Philosophical Magazine and 

Journal of Science, no. July, pp. 10–13, 1844. 

[6] W. Clifford, Mathematical Papers. London, Macmillan, 

1882. 

[7] A. P. Kotelnikov, “Screw calculus and some of its 

applications in geometry and mechanics,” Kazan (in 

Russia), 1895. 

[8] Leipzig, “Geometrie der Dynamen,” E. Study, 1903. 

[9] I. M. Yaglom, “A simple non-Euclidean geometry and its 

physical basis,” Springer Verlag, vol. New York, 1979. 

[10] M. L. Keler, “On the theory of screws and the dual 

method,” In Proceedings of A Symposium 

Commemorating the Legacy, Works, and Life of Sir 

Robert Stawell Ball Upon the 100th Anniversary of “A 

Treatise on the Theory of Screws,” vol. July 9–11, 2000. 

[11] E. Pennestr and R. Stefanelli, “Linear Algebra and 

Numerical Algorithms Using Dual,” Multibody System 

Dynamics, vol. 18, no. 3, pp. 323–344, 2007. 

[12] J. Plùcker, “On a new geometry of space,” Philosophical 

Transactions of the Royal Society of London, vol. 155, no. 

1865, pp. 725–791, 1865. 

[13] K. Daniilidis, “Hand-Eye Calibration Using Dual 

Quaternions,” The International Journal of Robotics 

Research, vol. 18, no. 3, pp. 286–298, Mar. 1999. 

[14] K. Daniilidis and B.-C. Eduardo, “The dual quaternion 

approach to hand-eye calibration,” Proceedings of the 13th 

International Conference on Pattern Recognition, vol. 1, 

pp. 318–322, 1996. 

[15] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan, 

“Skinning with dual quaternions,” In 2007 ACM 

SIGGRAPH symposium on interactive 3D graphics and 

games, vol. ACM Press, no. April/May, pp. 39–46, 2007. 

[16] J. Denavit and R. S. Hartenberg, “A Kinematic Notation 

for Lower-Pair Mechanisms Based on Matrices,” Journal 

of Applied Mechanics, vol. 22, no. June, pp. 215–221, 

1955. 

[17] L. T. Wang and B. Ravani, “Recursive computations of 

kinematic and dynamic equations for mechanical 

manipulators,” IEEE Journal of Robotics and Automation, 

vol. September, no. 3, pp. 124–131, 1985. 

[18] Y. Aydın and S. Kucuk, “Quaternion Based Inverse 

Kinematics for Industrial Robot Manipulators with Euler 

Wrist,” IEEE International Conference on Mechatronics, 

vol. July 3–5, pp. 581–586, 2006.  

 



Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond 

Ben Kenwright  (bkenwright@xbdev.net)    (October 2012) pp 10-11 

 

Appendix 
Sample Dual-Quaternion Class Implementation 

public class DualQuaternion_c 

{ 

public Quaternion   m_real; 

public Quaternion   m_dual; 

 

public static readonly DualQuaternion_c Identity = new DualQuaternion_c(); 

 

public DualQuaternion_c() 

{ 

  m_real = new Quaternion(0,0,0,1); 

  m_dual = new Quaternion(0,0,0,0); 

} 

public DualQuaternion_c( Quaternion r, Quaternion d ) 

{ 

  m_real = Quaternion.Normalize( r ); 

  m_dual = d; 

} 

public DualQuaternion_c( Quaternion r, Vector3 t ) 

{ 

  m_real     = Quaternion.Normalize( r ); 

  m_dual  = ( new Quaternion( t, 0 ) * m_real ) * 0.5f; 

} 

public static float Dot( DualQuaternion_c a, DualQuaternion_c b ) 

{ 

  return Quaternion.Dot( a.m_real, b.m_real ); 

} 

public static DualQuaternion_c operator* (DualQuaternion_c q, float scale) 

{ 

  DualQuaternion_c ret = q; 

  ret.m_real *= scale; 

  ret.m_dual *= scale; 

  return ret; 

} 

public static DualQuaternion_c Normalize( DualQuaternion_c q ) 

{ 

  float mag = Quaternion.Dot( q.m_real, q.m_real ); 

  Debug_c.Assert( mag > 0.000001f ); 

  DualQuaternion_c ret = q; 

  ret.m_real *= 1.0f / mag; 

  ret.m_dual *= 1.0f / mag; 

  return ret; 

} 

public static DualQuaternion_c operator +(DualQuaternion_c lhs, DualQuaternion_c rhs) 

{ 

  return new DualQuaternion_c(lhs.m_real + rhs.m_real, lhs.m_dual + rhs.m_dual); 

} 

// Multiplication order - left to right 

public static DualQuaternion_c operator *(DualQuaternion_c lhs, DualQuaternion_c rhs) 

{ 

  lhs = DualQuaternion_c.Normalize( lhs ); 

  rhs = DualQuaternion_c.Normalize( rhs ); 

 

  return new DualQuaternion_c( rhs.m_real * lhs.m_real,  

                  rhs.m_dual * lhs.m_real + rhs.m_real * lhs.m_dual); 

} 

public static DualQuaternion_c Conjugate( DualQuaternion_c q ) 

{ 

  return new DualQuaternion_c( Quaternion.Conjugate( q.m_real ),  

                               Quaternion.Conjugate( q.m_dual ) ); 

} 

public static Quaternion GetRotation( DualQuaternion_c q ) 

{ 

  return q.m_real; 

} 

public static Vector3 GetTranslation( DualQuaternion_c q ) 

{ 

  Quaternion t = ( q.m_dual * 2.0f ) * Quaternion.Conjugate( q.m_real ); 

  return new Vector3( t.X, t.Y, t.Z ); 

} 

public static Matrix DualQuaternionToMatrix( DualQuaternion_c q ) 

{    

  q = DualQuaternion_c.Normalize( q ); 

 

  Matrix M = Matrix.Identity; 

  float w  = q.m_real.W; 

  float x  = q.m_real.X; 

  float y  = q.m_real.Y; 

  float z  = q.m_real.Z; 

 

  // Extract rotational information 

  M.M11 = w*w + x*x - y*y - z*z; 



Dual-Quaternions: From Classical Mechanics to Computer Graphics and Beyond 

Ben Kenwright  (bkenwright@xbdev.net)    (October 2012) pp 11-11 

 

  M.M12 = 2*x*y + 2*w*z; 

  M.M13 = 2*x*z - 2*w*y; 

   

  M.M21 = 2*x*y - 2*w*z; 

  M.M22 = w*w + y*y - x*x - z*z; 

  M.M23 = 2*y*z + 2*w*x; 

 

  M.M31 = 2*x*z + 2*w*y; 

  M.M32 = 2*y*z - 2*w*x;  

  M.M33 = w*w + z*z - x*x - y*y; 

 

  // Extract translation information 

  Quaternion t = ( q.m_dual ) * Quaternion.Conjugate( q.m_real ) * 2.0f; 

  M.M41 = t.X; 

  M.M42 = t.Y; 

  M.M43 = t.Z; 

  return M;  

} 

 

public static  

DualQuaternion_c ScLERP( DualQuaternion_c from, DualQuaternion_c to, float t ) 

{ 

  // Shortest path 

  float dot = Quaternion.Dot(from.m_real, to.m_real); 

  if ( dot < 0 ) to = to * -1.0f; 

 

  // ScLERP = qa(qa^-1 qb)^t 

  DualQuaternion_c diff = DualQuaternion_c.Conjugate(from) * to; 

 

  Vector3 vr    = new Vector3(diff.m_real.X, diff.m_real.Y, diff.m_real.Z); 

  Vector3 vd    = new Vector3(diff.m_dual.X, diff.m_dual.Y, diff.m_dual.Z); 

  float   invr  = 1 / (float)Math.Sqrt( Vector3.Dot(vr, vr) ); 

 

  // Screw parameters 

  float angle       =  2 * (float)Math.Acos( diff.m_real.W ); 

  float pitch       = -2 * diff.m_dual.W * invr; 

  Vector3 direction =  vr * invr; 

  Vector3 moment    =  (vd - direction*pitch*diff.m_real.W*0.5f)*invr; 

 

  // Exponential power 

  angle *= t; 

  pitch *= t; 

 

  // Convert back to dual-quaternion 

  float sinAngle = Sin(0.5f*angle); 

  float cosAngle = Cos(0.5f*angle); 

  Quaternion real = new Quaternion( direction* sinAngle,  

                                    cosAngle ); 

  Quaternion dual = new Quaternion( sinAngle*moment+pitch*0.5f* cosAngle *direction, 

                                    -pitch*0.5f*sinAngle ); 

 

  // Complete the multiplication and return the interpolated value 

  return from * new DualQuaternion_c( real, dual ); 

} 

 

#if false 

public static void SimpleTest() 

{ 

  DualQuaternion_c dq0 = new DualQuaternion_c( Quaternion.CreateFromYawPitchRoll(1,2,3),  

                                               new Vector3(10,30,90) ); 

  DualQuaternion_c dq1 = new DualQuaternion_c( Quaternion.CreateFromYawPitchRoll(-1,3,2),  

                                               new Vector3(30,40,190) ); 

  DualQuaternion_c dq2 = new DualQuaternion_c( Quaternion.CreateFromYawPitchRoll(2,3,1.5f),  

                                               new Vector3(5,20,66) ); 

  DualQuaternion_c dq = dq0 * dq1 * dq2; 

 

  Matrix dqToMatrix = DualQuaternion_c.DualQuaternionToMatrix( dq ); 

 

  Matrix m0 = Matrix.CreateFromYawPitchRoll(1,2,3) * Matrix.CreateTranslation(10,30,90); 

  Matrix m1 = Matrix.CreateFromYawPitchRoll(-1,3,2) * Matrix.CreateTranslation(30,40,190); 

  Matrix m2 = Matrix.CreateFromYawPitchRoll(2,3,1.5f) * Matrix.CreateTranslation(5,20,66); 

  Matrix m = m0 * m1 * m2; 

} 

#endif 

} // End DualQuaternion_c 

Listing 1:  Dual-Quaternion Implementation Class (note, this version of the class was written for clarity a production ready version 

could be optimised and made more compact). 

 

 


