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ABSTRACT 
In this paper, we give a beginners guide to the practicality of using dual-quaternions to represent the rotations 

and translations in character-based hierarchies.  Quaternions have proven themselves in many fields of science 

and computing as providing an unambiguous, un-cumbersome, computationally efficient method of representing 

rotational information.  We hope after reading this paper the reader will take a similar view on dual-quaternions.  

We explain how dual number theory can extend quaternions to dual-quaternions and how we can use them to 

represent rigid transforms (i.e., translations and rotations).  Through a set of examples, we demonstrate exactly 

how dual-quaternions relate rotations and translations and compare them with traditional Euler’s angles in 

combination with Matrix concatenation.  We give a clear-cut, step-by-step introduction to dual-quaternions, 

which is followed by a no-nonsense how-to approach on employing them in code.  The reader, I believe, after 

reading this paper should be able to see how dual-quaternions can offer a straightforward solution of 

representing rigid transforms (e.g., in complex character hierarchies).  We show how dual-quaternions propose a 

novel alternative to pure Euler-Matrix methods and how a hybrid system in combination with matrices results in 

a faster more reliable solution.  We focus on demonstrating the enormous rewards of using dual-quaternions for 

rigid transforms and in particular their application in complex 3D character hierarchies. 
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1. INTRODUCTION 
Real-time dynamic 3D character systems combine 

key framed animations, inverse kinematics (IK) and 

physics-based models to produce controllable, 

responsive, realistic motions.  The majority of 

character-based systems use a skeleton hierarchical 

composition of rigid transforms.  Each rigid 

transform has six degrees of freedom (DOF) that 

consists of three translational and three rotational 

components.  Matrices are the most popular method 

of storing and combining these transforms.  While 

matrices are adequate, we ask the question, is there a 

better method?  In this paper, we address the 

advantages and disadvantages of matrices while 

proposing a novel alternative based on quaternions 

called dual-quaternions.  The purpose of this paper is 

to present a beginner’s guide to dual-quaternions in 

sufficient detail that the reader can begin to use them 

as a practical problem-solving tool for rigid character 

transforms.  This paper covers the basics of dual-

quaternions and their application to complex 

hierarchical systems with many DOF. 

Dual-quaternions are interesting and important 

because they cut down the volume of algebra.  They 

make the solution more straightforward and robust.  

They allow us to unify the translation and rotation 

into a single state; instead of having to define 

separate vectors.  While matrices offer a comparable 

alternative to dual-quaternions, we argue that they 

can be inefficient and cumbersome in comparison.  In 

fact, dual-quaternions give us a compact, un-

ambiguous, singularity-free, and computational 

minimalistic rigid transform.  In addition, dual-

quaternions have been shown to be the most efficient 

and most compact form of representing rotation and 

translation.  Dual-quaternions can easily take the 

place of matrices in hierarchies at no additional cost.  

For rigid transform hierarchies that combine and 

compare rigid transforms on a frame-by-frame bases 

(e.g., character inverse kinematics (IK) and joint 

constraints), alternative methods such as matrices 

need to be converted to quaternions to generate 

reliable contrast data; this can be done without any 

conversion using dual-quaternions.   

Many students have a great deal of trouble 

understanding essentially what quaternions are and 

how they can represent rotation.  So when the subject 

of dual-quaternions is presented, it is usually not 

welcomed with open arms.  Dual-quaternions are a 

break from the norm (i.e., matrices) which we hope 

to entice the reader into embracing to represent their 
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rigid transforms.  The reader should walk away from 

this paper with a clear understanding of what dual-

quaternions are and how they can be used. 

The majority of computer scientists are familiar with 

vectors, matrices, and quaternions.  They provide a 

set of tools to help solve problems.  This paper 

presents the case for adding dual-quaternions to this 

set of tools. 

The contribution of this paper is the explanation and 

demonstration of dual-quaternions in a sufficiently 

detailed way that the reader can begin to appreciate 

their practical problem-solving advantages.  We use 

character-based hierarchies as a base method to 

illustrate the realistic reward of dual-quaternions in 

time critical systems (e.g., games). 

This paper presents dual-quaternions as a method for 

representing rigid transforms in complex character 

hierarchies with a large number of DOF.  We explain 

how to implement a basic dual-quaternion class and 

combine dual-quaternions through straightforward 

multiplication to work in place of matrices.  

The roadmap for the rest of the paper is as follows:  

we begin with a review of recent and related work 

that emphasises the power of dual-quaternions.  We 

review familiar rigid transform methods and their 

advantages and disadvantages.  We then outline the 

primary reasons for using dual-quaternions and why 

you would want to use them for rigid transforms over 

other methods.  We then give the background 

mathematical information for dual numbers, 

quaternions and dual-quaternions.  The following 

sections then focus on the practical aspects of dual-

quaternions.  We discuss a variety of experiments 

with computer simulations and character hierarchies 

in relation to dual-quaternion.  Finally, the end 

section presents the conclusion and proposed future 

work. 

2. RELATED WORK 
The dual-quaternion has been around since 1882  

[CLIF82] but has gained less attention compared to 

quaternions alone.  Comparable to quaternions the 

dual-quaternions have had a taboo associated with 

them, whereby students avoid quaternion and hence 

dual-quaternions.  While the robotics community has 

started to adopt dual-quaternions in recent years, the 

computer graphics community has not embraced 

them as whole-heartedly.  We review some recent 

work which has taken hold and has demonstrated the 

practicality of dual-quaternions, both in robotics and 

computer graphics. 

2.1. Computer Graphics 
Kavan [KCŽO08] demonstrated the advantages of 

dual-quaternions in character skinning and blending. 

Ivo [IVIV11] extended Kavans [KCŽO08] work with 

dual-quaternions and qtangents as an alternative 

method for representing rigid transforms instead of 

matrices, and gives evidence that the results can be 

faster with accumulated transformations of joints if 

the inferences per vertex are large enough.  

Selig [SELI11] address the key problem in computer 

games. Examining the problem of solving the 

equations of motion in real-time and puts forward 

how dual-quaternion give a very neat and succinct 

way of represent rigid-body transformations. 

Vasilakis  [VAFU09] discussed skeleton-based rigid-

skinning for character animation. 

Kuang [KMLX11] presented a strategy for creating 

real-time animation of clothed body movement. 

2.2. Robotics 
Pham [PPAF10] solved linked chain inverse 

kinematic (IK) problems using Jacobian matrix in the 

dual-quaternion space. 

Malte [SCHI11] used a mean of multiple 

computational (MMC) model with dual-quaternions 

to model bodies.   

Ge [GVMC98] demonstrated dual-quaternions to be 

an efficient and practical method for interpolating 

three-dimensional motions. 

Yang-Hsing [LIWC10] calculated the relative 

orientation using dual-quaternions. 

Perez  [PEMC04] formulated dynamic constraints for 

articulated robotic systems using dual-quaternions. 

3. FAMILIAR PHYSICAL CONCEPTS 
We review the most common methods of 

representing rigid body orientations and translations 

in our physical world (three spatial dimensions).  

While orientation and rotation are familiar concepts, 

there are many ways to represent them both 

mathematically and computationally, each with their 

own strengths and weaknesses.  We briefly describe 

four of the most popular methods of representing 

rigid transforms in character systems.  This helps 

illustrate the mathematical and computational issues 

that occur.  The four alternate methods we compare 

mathematically and computationally to dual-

quaternions are: 

Matrices 
Axis-Angles 
Euler-Angles       + Translation 
Quaternions 

Each alternative method needs to represent both the 

orientation and translation.  In some cases this is 

achieved by using two separate state variables and 

combining them separately, while matrices and dual-

quaternions give us a unified state variable. 

For each case we focus on issues of interpolation, 

computational speed, mathematical robustness and 

distance metrics. 



 

The properties we look for to represent the rigid body 

transform are: 

Robustness – be continuous and not contain any 

discontinuities (such as gimbal lock with Euler’s 

angles which we discuss later).  Contain a unique 

representation, where some methods contain 

redundant information, such that several or an 

infinite number of elements can represent the same 

transform. 

Efficiency – should consume the smallest necessary 

amount of space and be computationally fast.  We 

would like a minimum number of calculations to 

combine and convert between alternative 

representations (e.g., cost to convert between 

matrices and Euler angles). 

Ease of Use – can be used without too many 

complications. 

3.1. Orientation and Translation 
It might seem intuitive how objects are rotated and 

translated.  For example, we can pick up any object 

around us and spin (rotate) and translate (move) it 

without thinking.  However, how do we model this 

computationally and mathematically?  The following 

sub-sections are devoted to the explanation and 

understanding of these basic principles. 

For methods which are formed from separate 

orientation and translational information, we can 

analyse their workings by considering orientation and 

translation separately and combining them at the end 

of each transform. 

3.2. Translation 
The translation coordinates are relatively simple to 

work with.  They compose of the scalar values along 

each of the principle axes (x, y and z).  The computed 

orientations are combined with the translations by 

rotating the principle axis.   

3.3. Euler-Angles 
A familiar way of representing the orientation and 

translation in character systems is to factor it into 

three sequential angles around the principle 

orthogonal axes (x, y and z). 

Euler’s angles in 3D do not (in-general) commute 

under composition. 

In practice, the angles are used by inserting them into 

matrices.  The product of the three angle-matrices 

produces the Euler angle set.  There are twelve 

possible products: XYZ, XYX, YZX, YZY, ZXY, 

ZXZ, XZY, XZX, YXZ, YXY, ZYX, and ZYZ.  

These are the order the rotations are applied in.  For 

example, the factorization XYZ, would mean rotate 

round X then Y then Z. 

To work with Euler angles we convert them to 

matrices: 
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Combining the translation is just a matter of rotating 

the translational components (x, y and z) by the 

rotation.  

To combine and calculate interpolating differences 

requires us to find the equivalent axis-angle of the 

two orientations and extrapolate the Euler angles. 

 Create a matrix for each Euler angle. 

 Multiply the three matrices together. 

 Extract axis-angle from resulting matrix. 

Converting, combining, and extracting Euler angles 

is computationally expensive.  Moreover, Euler 

angles can have discontinuities around 0 and 2, 

since the components live on separate circles and not 

a single vector space. 

3.3.1. Advantages 
People prefer Euler angles as they can comprehend 

them effortlessly and can create orientations with 

them without difficulty.  They are also very intuitive 

and have a long history in physics and graphics and 

can make certain integrals over rotational space 

easier. 

Euler angles are minimalistic and require only three 

parameters; however, we show later how four 

parameters are better than three.  Furthermore, since 

the angles are used directly, there is no drifting or the 

need for normalization. 

3.3.2. Disadvantages 
Euler angles suffer from singularities - angles will 

instantaneously change by up to 2 radians as other 

angles go through the singularity; Euler angles are 

virtually impossible to use for sequential rotations.  

There are twelve different possible Euler angle 

rotation sequences - XYZ, XYX, XZY, and so on.  

There is no one "simplest" or "right" set of Euler 

angles.  To derive a set of Euler angles you must 

know which rotational sequence you are using and 

stick to it.   

In practice when Euler angles are needed; the 

underlying rotation operations are done using 

quaternions and are converted to Euler angles for the 

task at hand. 



3.3.3. Gimbals Lock 
The coordination singularity in Euler’s angles is 

commonly referred to as gimbals lock.  A gimbal is a 

physical device consisting of spherical concentric 

hoops with pivots connecting adjacent hoops, 

allowing them to rotate within each other (see Figure 

1). 

 

Figure 1.  Gimbal with points of rotation indicated. 

A gimbal is constructed by aligning three rings and 

attaching them orthogonally.  Gimbals are often seen 

in gyroscopes used by the aeronautical industry. 

As objects are rotated, they approach gimbal lock the 

singularity will cause numerical ill-conditioning, 

often evidented physically by the gimbal wiggling 

madly around as it operates near the singularity.  This 

is one reason why the aerospace industry, early on, 

switched to quaternions to represent orientation – 

satellites, rockets and airplanes would have their 

navigation gyro lock up and could cause them to 

crash. 

3.3.4. Interpolation 
The major problem with Euler interpolation is that 

they have problems while interpolating near gimbals 

lock regions.  When close to a gimbal lock 

singularity the interpolation become jittery and noise 

ridden; eventually becoming random and unstable as 

it converges on the singularity. 

If Euler angles are interpolated linearly the resulting 

path will not take the shortest path between the 

endpoints as it does in vector space [ALMA92]. 

3.4. Axis-Angle 
The axis-angle is represented by a unit axis and angle 

( ˆ,n  ) pair.  This axis-angle representation can easily 

be converted to and from a matrix. 

It is difficult to combine the axis-angle elements in 

their native form; usually being converted to an 

alternate representation for concatenation (e.g., 

matrices, quaternions). 

3.4.1. Advantages 
The greatest single advantage of the axis-angle 

representation is that it directly represents the action 

of rotation, while being straightforward and intuitive 

to work with. 

3.4.2. Disadvantages 
We can renormalize the axis since it is a unit vector, 

but numerical errors can still creep into the angle 

portion. 

Infinite number of angle choices (multiples of 2), so 

two axis-angle pairs can still refer to the same 

rotation but be different. 

Axis-angle interpolation cannot be done using linear 

interpolation of the four elements.  Interpolating 

between the four elements naively in this way does 

not give the shortest path.  

Interpolating the angle alone can introduce 

discontinuities as the angle crosses from 0 to 2.  

These ‘jumps’ are highly undesirable and can cause 

anarchy with the interpolation and numerical 

integration schemes. 

3.5. Matrices 
Representing a rigid transform using a matrix we 

extend a 3x3 rotation matrix to include translation 

information which makes it a 4x3 matrix.  While a 

4x3 matrix is the most efficient, on most occasions a 

4x4 matrix is used because of availability. 

The 3x3 part of the matrix consists of three 

orthogonal column vectors which are of unit 

magnitude. 

A transform matrix can transform a vector coordinate 

by simply matrix multiplication: 

y Tx  

where T is a transform matrix, x a vector coordinate 

and y the transformed result. 

If the position and basis vectors are known, the 

transform matrix can trivially be produced, because 

each of the columns in the 3x3 part of the matrix 

represent the base vectors and the bottom row the 

translation. 

The combination of matrix elements is achieved 

through simple multiplication.  Matrices are not 

commutative and therefore their matrix 

representation of rigid body transforms is non-

commutative as well. 

3.5.1. Advantages 
Matrices are taught in linear algebra early on in 

colleges so this makes them more familiar and 

favourable.  In addition, a great many algorithms 

have been formulated and tested with matrices and so 

people choose them instinctively first. 

3.5.2. Disadvantages 
While matrices might seem to be the utopia, they in-

fact can be found to have several problems.   

Firstly, they take a minimum of 12 parameters to 

represent a structure with only six DOF; if memory is 

at a premium this can be undesirable. 



 

Secondly, the rotational part of the matrix is 

composed of orthogonal columns which can drift and 

introduce unwanted scaling and sheering.  We can re-

normalize the matrix using Gram-Schmidt method 

[GILB86] but this can be computationally expensive. 

Thirdly, interpolating between matrices is difficult.  

The three columns forming the orthogonal axis 

directions in the rotation part of the matrix do not 

represent the vector space and cannot be interpolated. 

Finally, it is difficult to visualize a matrix and the 

axis-angle component about which it will rotate and 

translate. 

3.6. Method Summary 
We have outlined and examined current methods for 

representing a robust, practical and viable 

hierarchical rigid body solution.  We now follow on 

from this by introducing and explaining how and 

why dual-quaternions stand-out above these methods.  

4. WHY DUAL-QUATERNIONS? 
We use dual-quaternions as a tool for expressing and 

analyzing the physical properties of rigid bodies.  

Dual-quaternions can formulate a problem more 

concisely, solve it more rapidly and in fewer steps, 

present the result more plainly to others, be put into 

practice with fewer lines of code and debugged 

effortlessly.  Furthermore, there is no loss of 

efficiency; dual-quaternions can be just as efficient if 

not more efficient than using matrix methods.  In all, 

there are several reasons for using dual-quaternions, 

which we summarize: 

 Singularity-free 

 Un-ambiguous 

 Shortest path interpolation 

 Most efficient and compact form for 

representing rigid transforms [SCHI11] - (3x4 

matrix 12 floats compared to a dual-quaternion 8 

floats) 

 Unified representation of translation and rotation 

 Can be integrated into a current system with 

little coding effort 

 The individual translation and rotational 

information is combined to produce a single 

invariant coordinate frame [GVMC98] 

5. DUAL NUMBERS 
Clifford [CLIF82] introduced dual numbers; similar 

to complex numbers that consists of two parts known 

as the real and complex component.  Dual numbers 

break the problem into two components and are 

defined as: 

z r d   with 2 0  but 0   

where  is the dual operator, r is the real part and d 

the dual part.  Similar to complex number theory, 

where i is added to distinguish the real and complex 

components, the dual operator   is used in the same 

way. 

The dual number theory can be extended to other 

concepts, such as vectors and real numbers, but we 

focus on their applicability in conjunction with 

quaternions to represent rotation and translation 

transforms.  

5.1. Dual Number Arithmetic Operations 
Dual numbers can perform the fundamental 

arithmetic operations below: 

Addition 

( ) ( ) ( ) ( )A A B B A B A Br d r d r r d d        
 

Multiplication 

2( )( )

( )

A A B B A B A B B A A B

A B A B B A

r d r d r r r d r d d d

r r r d r d

    



     

  
 

Division 

2

2 2

( ) ( ) ( )

( ) ( ) ( )

( )

( )

A A A A B B

B B B B B B

A B B A A B

B

A B B A A B

B B

r d r d r d

r d r d r d

r r r d r d

r

r r r d r d

r r

  

  





  


  

 



 

 

Further reading on the subject of dual numbers is 

presented by Gino [BERG09]. 

5.2. Dual Number Differentiation 
Dual numbers differentiate in the same way as any 

other vector using elementary calculus principles, 

e.g.: 

0

d ( ) ( )
( ) lim

dx x

x x x
x
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 
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s s
s  

The derivative of a dual number is another dual 

number.  Remarkably, the dual operator’s condition 
2 0   enables us to take advantage of Taylor series 

to find the differentiable.  Where we can see below, 

if we substituting a dual number into Taylor series, 

we get: 
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Remarkably, the Taylor series result gives us an 

exceptionally tidy answer; from this we use dual 

number arithmetic and substitution to find the 

solution to any differential.   

The derivative also enables us to find the tangent of 

an arbitrary point p on a given parametric curve that 

is equal to the normalized dual part of the point p. 



6. QUATERNIONS 
Quaternions were introduced by Hamilton in 1866 

[HAMI86] and have had a rollercoaster of a time with 

acceptance.  Quaternions are an extension of 

complex number-theory to formulate a four 

dimensional manifold.  A quaternion is defined as: 

( )w x y z   q i j k  

where w, x, y and z are the numerical values, while i, 

j and k are the imaginary components. 

The imaginary components properties: 

2 2 2 1i j k     

and 

,

,

,

ij k ji k

jk i kj i

ki j ik j

  

  

  

 

It is more common to represent the quaternion as two 

components, the vector component (x, y and z) and 

the scalar component (w). 

( , )wq v  

For further reading on the workings of quaternions 

and their advantages I highly recommend reading 

McDonalds [MCDO10] introductory paper for 

students. 

6.1. Quaternion Arithmetic Operations 
Since we are combining quaternions with dual 

number theory, we give the elementary quaternion 

arithmetic operations below: 

Scalar Multiplication 

( , )s sw sq v  

     where s is a scalar value. 

Addition 

1 2 1 2 1 2( , )w w   q q v v  

Multiplication 

1 2 1 2 1 2 1 2 2 1 1 2( , ( ) )w w v v w w    q q v v v v  

Conjugate 

* ( , )w q v  

Magnitude 

*|| ||q qq  

 

For a unit quaternion, || || 1q .  The unit quaternion 

is used to represent a rotation of an angle , radians 

about a unit axis n , in three-dimensional space: 

(cos( ), sin( ) )
2 2

 
q n

 

6.2. Quaternion Interpolation 
An extremely important quality of quaternions that 

make them indispensable in animation systems is 

their ability to interpolate two or more quaternions 

smoothly and continuously.  Shoemake [SHOE85], 

presents an outstanding paper on using quaternion 

curves for animating rotations.  Furthermore, it 

should be noted, the spherical linear interpolation 

(SLERP) properties of quaternions are inherited by 

dual-quaternions. 

7. DUAL-QUATERNIONS 
When quaternions are combined with dual number 

theory, we get dual-quaternions which was presented 

by Clifford in 1882 [CLIF82].  While the unit 

quaternion only has the ability to represent rotation, 

the unit dual-quaternion can represent both 

translation and rotation.  Each dual-quaternion 

consists of eight elements or two quaternions.  The 

two quaternion elements are called the real part and 

the dual part.  

r d q q q  

where
rq and 

dq are quaternions.  Combining the 

algebra operations associated with quaternions with 

the additional dual number  , we can form the dual-

quaternion arithmetic. 

7.1. Dual-Quaternion Arithmetic 

Operations 
The elementary arithmetic operations necessary for 

us to use dual-quaternions are: 

Scalar Multiplication 

r ds s s  q q q  

Addition 

1 2 1 2 1 2( )r r d d     q q q q q q  

Multiplication 

1 2 1 2 1 2 1 2( )r r r d d r   q q q q q q q q  

Conjugate 
* * *

r d  q q q  

Magnitude 
*|| ||q qq  

Unit Condition 

 || || 1q  

* * 0r d d r q q q q  

The unit dual-quaternion is our key concern as it can 

represent any rigid rotational and translational 

transformations. 

The rigid rotational and translational information for 

the unit dual-quaternion is: 
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2

r

d
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q r
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where r  is a unit quaternion representing the rotation 

and t  is the quaternion describing the translation 

represented by the vector (0, )tt . 

The dual-quaternion can represent a pure rotation the 

same as a quaternion by setting the dual part to zero.   

[cos( ), sin( ), sin( ), sin( ) ][0,0,0,0]
2 2 2 2

r x y z

   
q n n n

 

To represent a pure translation with no rotation, the 

real part can be set to an identity and the dual part 

represents the translation.   

[1,0,0,0][0, , , ]
2 2 2

yx z
t 

tt t
q  

Combining the rotational and translational 

transforms into a single unit quaternion to represent 

a rotation followed by a translation we get: 

t r q q q  

This arithmetic operation defines how we transform a 

point p, using a unit dual-quaternion: 

*' p qpq  

where *andq q represent a dual-quaternion 

transform and its conjugate;  while and 'p p  

represent our point inserted into a quaternion and its 

resulting transform. 

8. PORTING EXISTING CODE TO 

DUAL-QUATERNIONS 
A dual-quaternion consists of two quaternions, but is 

represented by a single variable Q.  Systems that 

have been constructed using separate translation and 

rotation (vector for translation and quaternion for 

rotation) in combination with matrices schemes are 

easily modified to use dual-quaternions for spatial 

information. 

1. For each link, construct a dual-quaternion Q 

from the rotation and translation information. 

2. Real part of the quaternion is the rotation 

quaternion r.  The dual part is calculated by 

multiplying the quaternion r and translation 

component t, e.g.: 

 

0.5 (0, )

Qr r

Qd t r




 

 

3. Combine transformations as you would matrices 

using multiplication. 

4. If necessary, for long chains, the dual-quaternion 

should be re-normalized (to mend drift and 

maintain a unit dual-quaternion). 

5. To get the homogeneous transformation matrix, 

convert the dual-quaternion by extracting the 

translational and rotational components. 

6. The extracted rotation quaternion r and vector 

translation information is extracted using: 
 

*2

r Qr

t Qd Qr




 

Dual-quaternion multiplication is more efficient than 

matrix multiplication and can effortlessly be 

converted back to a matrix when needed.  Dual-

quaternions, unlike Euler angles, do not present 

issues like "gimbal lock" and hence, are ideal for 

complex articulated hierarchies. 

9. COMPLEX CHARACTER 

HIERARCHY FORWARD 

KINEMATICS 
The focus of our attention is with rigid hierarchies 

having a large number of DOF.  Humans have a 

tremendous amount of flexibility which we emulate 

and analyze using numerical and mathematical 

models.  Forward kinematics is the method of 

concatenating local positions and rotations together 

to give their global ones.  The forward kinematic 

method for concatenating transforms is the same for 

dual-quaternions and matrices; which use simple 

multiplication to propagate transforms between the 

connected links. 

For example, the concatenation of transforms with 

matrices and dual-quaternions: 

Matrix 

03 0 1 2 3M M M M M  

Dual-Quaternion 

03 0 1 2 3q q q q q
 

where the subscript represents the transform,  matrix 

transform 0M corresponding to dual-quaternion 

transform 0q . 

10. EXPERIMENTAL RESULTS 
We used traditional matrix methods during initial 

character transformation experiments; e.g., inverse 

kinematic (IK) and animation blending to 

demonstrate their numerous problems.  Matrix 

methods are a popular choice and solutions to these 

problems have been developed; we used some of 

these engineering solutions.  Of course, these 

workarounds to these problems introduced an 

additional computational cost.  Furthermore, certain 

circumventions to overcome a problem often 

introduced errors in other areas.  One such 

engineering solution for reducing the impact of drift 



and concatenation error was to renormalize the 

matrices at each level (and at each update frame).  

The error reduced skewing and scaling but 

manifested itself in the ideal global end-link 

orientations and positions being inaccurate.  

To demonstrate the problems, we constructed 

numerous test cases to emphasis them.  We also 

demonstrate and explore how dual-quaternions can 

represent rigid body character based systems. 

10.1. Rigid Body Transform Chains 
We constructed a straightforward IK solver that 

would follow a target end-effector.  To mimic how a 

character would move his arm or leg.  The end-

effector had six DOF, which the IK solver had to 

work with to meet its target goal.   

 

Figure 2.  Rigid body links attached in a single 

hieararchy frame.  (Draw ideal(red) and calculated 

end-effector (green). 

The hierarchy is composed of rigid links.  Each link 

held a rotation and translation in the form of a matrix 

or dual-quaternion.  For calculations, the axis-angle 

and translation could be extracted and used when 

needed.  Local transforms were combined from the 

root to the end-effectors.  Concatenation of the 

transforms throughout the levels was achieved by 

multiplying parent transforms with current 

transforms. 

Certain orientation and translation configurations 

produced errors in the output, shown in Figure 3.  

These errors presented themselves as skewing and 

scaling manifestations.  

 

Figure 3.  Artifact error when matrices representing 

translation and orientation in linked hierarchies.   

Early workarounds to amend the problem were to 

repair the matrix at each level in the hierarchy by 

ortho-normalizing the rotational component.  While 

ortho-normalizing the matrix reduced scaling and 

skewing artifacts, alternative errors manifest 

themselves in alternative forms. 

 

Figure 4.  Ortho-normalizing matrices in 

hierarchies in an attempt to reduce errors.  

Ortho-normalizing the rotational part of the 

transform matrix between updates removed scaling 

and skewing problems.  The joints presented 

discontinuity errors in the frames hierarchy (see 

Figure 4).  The ideal end-effectors position and 

rotation were also different from the calculated one 

using the refurbish matrices. 

10.2. Biped Model 
For our test character, we used a 16 link biped model, 

shown in Figure 5.  The character has 36 degrees of 

freedom (DOF).  Character rigs can produce 

extremely non-linear motions due to their joint limits, 

flexibility and elaborate arrangement of joints.   

 

Figure 5.  16 link biped model used for testing. 

Figure 5, shows the biped model in its starting stance 

pose.   

Buildup of computational inaccuracies will cause a 

dual-quaternion to become of non-unit length; we fix 

these errors by renormalization.  In contrast, 

repairing a non-orthogonal matrix is much more 

complicated (see [SALA79]). 

11. RESULTS 
The dual-quaternion unifies the translation and 

rotation into a single state variable.  This single state 

variable offers a robust, unambiguous, 

computationally efficient way of representing rigid 

transform.   

The computational cost of combining matrices and 

dual-quaternions: 

Matrix4x4 : 64mult + 48adds 

Matrix4x3 : 48mult + 32adds 

DualQuaternion : 42mult + 38adds 

 



 

In our tests, we found the dual-quaternion 

multiplication method of transforms on average ten 

percent faster compared matrix multiplication.  We 

did not take advantage of CPU architecture using 

parallel methods such as SIMD which can further 

improve speeds as demonstrated by Pallavi 

[MEHU10] (both for matrices and quaternion 

multiplication). 

One major advantage we found when working with 

dual-quaternions was the added advantage of 

calculating angular and linear differences.  When 

working with pure matrix methods we needed to 

convert the matrix to a quaternion to calculate 

angular variations. 

12. CONCLUSION AND FURTHER 

WORK 
The dual-quaternion model is an accurate, 

computationally efficient, robust, and flexible 

method of representing rigid transforms and should 

not be overlooked.  Implementing pre-programmed 

dual-quaternion modules (e.g., multiplication and 

normalization) enables the creation of more elegant 

and clearer computer programs that are easier to 

work with and control. 

While matrices are the de-facto method used for the 

majority of hierarchy based simulations, we have 

shown that they can present certain problems which 

are costly to avoid (e.g., renormalizing a matrix).  

The problem and cost of drifting and normalizing is 

less with dual-quaternions compared to matrix 

methods.  When dealing with rigid transforms the 

dual-quaternion method shines through due to its 

numerous advantages.   

This paper has only provided a taste of the potential 

advantages of dual-quaternions, and one can only 

imagine the further future possibilities that they can 

offer.  For example, there is a deeper investigation of 

the mathematical properties of dual-quaternions (e.g., 

zero divisions).  There is also the concept of dual-

dual-quaternions (i.e., dual numbers within dual 

numbers) and calculus for multi-parametric objects 

for the reader to pursue if he desires.  

13. APPENDIX 

13.1. Dual-Quaternion Implementation 

Class. 
public class DualQuaternion_c 
{ 
public Quaternion m_real; 
public Quaternion m_dual; 
public DualQuaternion_c() 
{ 
  m_real = new Quaternion(0,0,0,1); 
  m_dual = new Quaternion(0,0,0,0); 
} 
public DualQuaternion_c( Quaternion r, Quaternion d ) 
{ 
  m_real = Quaternion.Normalize( r ); 
  m_dual = d; 
} 

public DualQuaternion_c( Quaternion r, Vector3 t ) 
{ 
  m_real  = Quaternion.Normalize( r ); 
  m_dual  = ( new Quaternion( t, 0 ) * m_real ) * 0.5f; 
} 
public static float Dot( DualQuaternion_c a, 
DualQuaternion_c b ) 
{ 
  return Quaternion.Dot( a.m_real, b.m_real ); 
} 
public static DualQuaternion_c operator* (DualQuaternion_c 
q, float scale) 
{ 
  DualQuaternion_c ret = q; 
  ret.m_real *= scale; 
  ret.m_dual *= scale; 
  return ret; 
} 
public static DualQuaternion_c Normalize( DualQuaternion_c q 
) 
{ 
  float mag = Quaternion.Dot( q.m_real, q.m_real ); 
  Debug_c.Assert( mag > 0.000001f ); 
  DualQuaternion_c ret = q; 
  ret.m_real *= 1.0f / mag; 
  ret.m_dual *= 1.0f / mag; 
  return ret; 
} 
public static DualQuaternion_c operator + (DualQuaternion_c 
lhs, DualQuaternion_c rhs) 
{ 
  return new DualQuaternion_c(lhs.m_real + rhs.m_real, 
    lhs.m_dual + rhs.m_dual); 
} 
// Multiplication order - left to right 
public static DualQuaternion_c operator * (DualQuaternion_c 
lhs, DualQuaternion_c rhs) 
{ 
  return new DualQuaternion_c(rhs.m_real*lhs.m_real,  
     rhs.m_dual*lhs.m_real + rhs.m_real*lhs.m_dual); 
} 
public static DualQuaternion_c Conjugate( DualQuaternion_c q 
) 
{ 
  return new DualQuaternion_c( Quaternion.Conjugate( 
q.m_real ), Quaternion.Conjugate( q.m_dual ) ); 
} 
public static Quaternion GetRotation( DualQuaternion_c q ) 
{ 
  return q.m_real; 
} 
public static Vector3 GetTranslation( DualQuaternion_c q ) 
{ 
  Quaternion t = ( q.m_dual * 2.0f ) * Quaternion.Conjugate( 
q.m_real ); 
  return new Vector3( t.X, t.Y, t.Z ); 
} 
public static Matrix DualQuaternionToMatrix( 
DualQuaternion_c q ) 
{  
  q = DualQuaternion_c.Normalize( q ); 
 
  Matrix M = Matrix.Identity; 
  float w = q.m_real.W; 
  float x = q.m_real.X; 
  float y = q.m_real.Y; 
  float z = q.m_real.Z; 
 
  // Extract rotational information 
  M.M11 = w*w + x*x - y*y - z*z; 
  M.M12 = 2*x*y + 2*w*z; 
  M.M13 = 2*x*z - 2*w*y; 
   
  M.M21 = 2*x*y - 2*w*z; 
  M.M22 = w*w + y*y - x*x - z*z; 
  M.M23 = 2*y*z + 2*w*x; 
 
  M.M31 = 2*x*z + 2*w*y; 
  M.M32 = 2*y*z - 2*w*x;  
  M.M33 = w*w + z*z - x*x - y*y; 
 
  // Extract translation information 
  Quaternion t = (q.m_dual * 2.0f) * Quaternion.Conjugate( 
q.m_real); 
  M.M41 = t.X; 
  M.M42 = t.Y; 
  M.M43 = t.Z; 
  return M;  



} 
 
#if false 
public static void SimpleTest() 
{ 
  DualQuaternion_c dq0 = new DualQuaternion_c( 
Quaternion.CreateFromYawPitchRoll(1,2,3), new 
Vector3(10,30,90) ); 
  DualQuaternion_c dq1 = new DualQuaternion_c( 
Quaternion.CreateFromYawPitchRoll(-1,3,2), new 
Vector3(30,40, 190 ) ); 
  DualQuaternion_c dq2 = new DualQuaternion_c( 
Quaternion.CreateFromYawPitchRoll(2,3,1.5f), new 
Vector3(5,20, 66 ) ); 
  DualQuaternion_c dq = dq0 * dq1 * dq2; 
 
 
  Matrix dqToMatrix = 
DualQuaternion_c.DualQuaternionToMatrix( dq ); 
 
  Matrix m0 = Matrix.CreateFromYawPitchRoll(1,2,3) * 
Matrix.CreateTranslation( 10, 30, 90 ); 
  Matrix m1 = Matrix.CreateFromYawPitchRoll(-1,3,2) * 
Matrix.CreateTranslation( 30, 40, 190 ); 
  Matrix m2 = Matrix.CreateFromYawPitchRoll(2,3,1.5f) * 
Matrix.CreateTranslation( 5, 20, 66 ); 
  Matrix m = m0 * m1 * m2; 
} 
#endif 
} // End DualQuaternion_c 

 

13.2. Novice Errors 
There are a few things to look out for when 

implementing a dual-quaternion class.  Firstly, 

ensure the multiplication order is correct and 

remains consistent with matrices (i.e., left to right).  

Secondly, always ensure that the dual-quaternions 

remain normalized (i.e., unit-length). 
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