
A Beginners Guide to Dual-Quaternions
What They Are, How They Work, and How to Use Them for 3D Character Hierarchies

Ben Kenwright

School of Computing Science, Newcastle University

Newcastle Upon Tyne, United Kingdom

b.kenwright@ncl.ac.uk

ABSTRACT
In this paper, we give a beginners guide to the practicality of using dual-quaternions to represent the rotations

and translations in character-based hierarchies. Quaternions have proven themselves in many fields of science

and computing as providing an unambiguous, un-cumbersome, computationally efficient method of representing

rotational information. We hope after reading this paper the reader will take a similar view on dual-quaternions.

We explain how dual number theory can extend quaternions to dual-quaternions and how we can use them to

represent rigid transforms (i.e., translations and rotations). Through a set of examples, we demonstrate exactly

how dual-quaternions relate rotations and translations and compare them with traditional Euler’s angles in

combination with Matrix concatenation. We give a clear-cut, step-by-step introduction to dual-quaternions,

which is followed by a no-nonsense how-to approach on employing them in code. The reader, I believe, after

reading this paper should be able to see how dual-quaternions can offer a straightforward solution of

representing rigid transforms (e.g., in complex character hierarchies). We show how dual-quaternions propose a

novel alternative to pure Euler-Matrix methods and how a hybrid system in combination with matrices results in

a faster more reliable solution. We focus on demonstrating the enormous rewards of using dual-quaternions for

rigid transforms and in particular their application in complex 3D character hierarchies.

Keywords
Dual-Quaternion, 3D, Real-Time, Character Hierarchies, Rigid Transformation

1. INTRODUCTION
Real-time dynamic 3D character systems combine

key framed animations, inverse kinematics (IK) and

physics-based models to produce controllable,

responsive, realistic motions. The majority of

character-based systems use a skeleton hierarchical

composition of rigid transforms. Each rigid

transform has six degrees of freedom (DOF) that

consists of three translational and three rotational

components. Matrices are the most popular method

of storing and combining these transforms. While

matrices are adequate, we ask the question, is there a

better method? In this paper, we address the

advantages and disadvantages of matrices while

proposing a novel alternative based on quaternions

called dual-quaternions. The purpose of this paper is

to present a beginner’s guide to dual-quaternions in

sufficient detail that the reader can begin to use them

as a practical problem-solving tool for rigid character

transforms. This paper covers the basics of dual-

quaternions and their application to complex

hierarchical systems with many DOF.

Dual-quaternions are interesting and important

because they cut down the volume of algebra. They

make the solution more straightforward and robust.

They allow us to unify the translation and rotation

into a single state; instead of having to define

separate vectors. While matrices offer a comparable

alternative to dual-quaternions, we argue that they

can be inefficient and cumbersome in comparison. In

fact, dual-quaternions give us a compact, un-

ambiguous, singularity-free, and computational

minimalistic rigid transform. In addition, dual-

quaternions have been shown to be the most efficient

and most compact form of representing rotation and

translation. Dual-quaternions can easily take the

place of matrices in hierarchies at no additional cost.

For rigid transform hierarchies that combine and

compare rigid transforms on a frame-by-frame bases

(e.g., character inverse kinematics (IK) and joint

constraints), alternative methods such as matrices

need to be converted to quaternions to generate

reliable contrast data; this can be done without any

conversion using dual-quaternions.

Many students have a great deal of trouble

understanding essentially what quaternions are and

how they can represent rotation. So when the subject

of dual-quaternions is presented, it is usually not

welcomed with open arms. Dual-quaternions are a

break from the norm (i.e., matrices) which we hope

to entice the reader into embracing to represent their

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for

profit or commercial advantage and that copies bear this

notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission

and/or a fee.

rigid transforms. The reader should walk away from

this paper with a clear understanding of what dual-

quaternions are and how they can be used.

The majority of computer scientists are familiar with

vectors, matrices, and quaternions. They provide a

set of tools to help solve problems. This paper

presents the case for adding dual-quaternions to this

set of tools.

The contribution of this paper is the explanation and

demonstration of dual-quaternions in a sufficiently

detailed way that the reader can begin to appreciate

their practical problem-solving advantages. We use

character-based hierarchies as a base method to

illustrate the realistic reward of dual-quaternions in

time critical systems (e.g., games).

This paper presents dual-quaternions as a method for

representing rigid transforms in complex character

hierarchies with a large number of DOF. We explain

how to implement a basic dual-quaternion class and

combine dual-quaternions through straightforward

multiplication to work in place of matrices.

The roadmap for the rest of the paper is as follows:

we begin with a review of recent and related work

that emphasises the power of dual-quaternions. We

review familiar rigid transform methods and their

advantages and disadvantages. We then outline the

primary reasons for using dual-quaternions and why

you would want to use them for rigid transforms over

other methods. We then give the background

mathematical information for dual numbers,

quaternions and dual-quaternions. The following

sections then focus on the practical aspects of dual-

quaternions. We discuss a variety of experiments

with computer simulations and character hierarchies

in relation to dual-quaternion. Finally, the end

section presents the conclusion and proposed future

work.

2. RELATED WORK
The dual-quaternion has been around since 1882

[CLIF82] but has gained less attention compared to

quaternions alone. Comparable to quaternions the

dual-quaternions have had a taboo associated with

them, whereby students avoid quaternion and hence

dual-quaternions. While the robotics community has

started to adopt dual-quaternions in recent years, the

computer graphics community has not embraced

them as whole-heartedly. We review some recent

work which has taken hold and has demonstrated the

practicality of dual-quaternions, both in robotics and

computer graphics.

2.1. Computer Graphics
Kavan [KCŽO08] demonstrated the advantages of

dual-quaternions in character skinning and blending.

Ivo [IVIV11] extended Kavans [KCŽO08] work with

dual-quaternions and qtangents as an alternative

method for representing rigid transforms instead of

matrices, and gives evidence that the results can be

faster with accumulated transformations of joints if

the inferences per vertex are large enough.

Selig [SELI11] address the key problem in computer

games. Examining the problem of solving the

equations of motion in real-time and puts forward

how dual-quaternion give a very neat and succinct

way of represent rigid-body transformations.

Vasilakis [VAFU09] discussed skeleton-based rigid-

skinning for character animation.

Kuang [KMLX11] presented a strategy for creating

real-time animation of clothed body movement.

2.2. Robotics
Pham [PPAF10] solved linked chain inverse

kinematic (IK) problems using Jacobian matrix in the

dual-quaternion space.

Malte [SCHI11] used a mean of multiple

computational (MMC) model with dual-quaternions

to model bodies.

Ge [GVMC98] demonstrated dual-quaternions to be

an efficient and practical method for interpolating

three-dimensional motions.

Yang-Hsing [LIWC10] calculated the relative

orientation using dual-quaternions.

Perez [PEMC04] formulated dynamic constraints for

articulated robotic systems using dual-quaternions.

3. FAMILIAR PHYSICAL CONCEPTS
We review the most common methods of

representing rigid body orientations and translations

in our physical world (three spatial dimensions).

While orientation and rotation are familiar concepts,

there are many ways to represent them both

mathematically and computationally, each with their

own strengths and weaknesses. We briefly describe

four of the most popular methods of representing

rigid transforms in character systems. This helps

illustrate the mathematical and computational issues

that occur. The four alternate methods we compare

mathematically and computationally to dual-

quaternions are:

Matrices
Axis-Angles
Euler-Angles + Translation
Quaternions

Each alternative method needs to represent both the

orientation and translation. In some cases this is

achieved by using two separate state variables and

combining them separately, while matrices and dual-

quaternions give us a unified state variable.

For each case we focus on issues of interpolation,

computational speed, mathematical robustness and

distance metrics.

The properties we look for to represent the rigid body

transform are:

Robustness – be continuous and not contain any

discontinuities (such as gimbal lock with Euler’s

angles which we discuss later). Contain a unique

representation, where some methods contain

redundant information, such that several or an

infinite number of elements can represent the same

transform.

Efficiency – should consume the smallest necessary

amount of space and be computationally fast. We

would like a minimum number of calculations to

combine and convert between alternative

representations (e.g., cost to convert between

matrices and Euler angles).

Ease of Use – can be used without too many

complications.

3.1. Orientation and Translation
It might seem intuitive how objects are rotated and

translated. For example, we can pick up any object

around us and spin (rotate) and translate (move) it

without thinking. However, how do we model this

computationally and mathematically? The following

sub-sections are devoted to the explanation and

understanding of these basic principles.

For methods which are formed from separate

orientation and translational information, we can

analyse their workings by considering orientation and

translation separately and combining them at the end

of each transform.

3.2. Translation
The translation coordinates are relatively simple to

work with. They compose of the scalar values along

each of the principle axes (x, y and z). The computed

orientations are combined with the translations by

rotating the principle axis.

3.3. Euler-Angles
A familiar way of representing the orientation and

translation in character systems is to factor it into

three sequential angles around the principle

orthogonal axes (x, y and z).

Euler’s angles in 3D do not (in-general) commute

under composition.

In practice, the angles are used by inserting them into

matrices. The product of the three angle-matrices

produces the Euler angle set. There are twelve

possible products: XYZ, XYX, YZX, YZY, ZXY,

ZXZ, XZY, XZX, YXZ, YXY, ZYX, and ZYZ.

These are the order the rotations are applied in. For

example, the factorization XYZ, would mean rotate

round X then Y then Z.

To work with Euler angles we convert them to

matrices:

1 0 0

0 cos sin

0 sin cos

cos 0 sin

0 1 0

sin 0 cos

cos sin 0

sin cos 0

0 0 1

x x

x x

y y

y y

z z

z z

 

 

 

 

 

 

 
 

 
 
  

 
 

  
  

 
 


 
  

X

Y

Z

Combining the translation is just a matter of rotating

the translational components (x, y and z) by the

rotation.

To combine and calculate interpolating differences

requires us to find the equivalent axis-angle of the

two orientations and extrapolate the Euler angles.

 Create a matrix for each Euler angle.

 Multiply the three matrices together.

 Extract axis-angle from resulting matrix.

Converting, combining, and extracting Euler angles

is computationally expensive. Moreover, Euler

angles can have discontinuities around 0 and 2,

since the components live on separate circles and not

a single vector space.

3.3.1. Advantages
People prefer Euler angles as they can comprehend

them effortlessly and can create orientations with

them without difficulty. They are also very intuitive

and have a long history in physics and graphics and

can make certain integrals over rotational space

easier.

Euler angles are minimalistic and require only three

parameters; however, we show later how four

parameters are better than three. Furthermore, since

the angles are used directly, there is no drifting or the

need for normalization.

3.3.2. Disadvantages
Euler angles suffer from singularities - angles will

instantaneously change by up to 2 radians as other

angles go through the singularity; Euler angles are

virtually impossible to use for sequential rotations.

There are twelve different possible Euler angle

rotation sequences - XYZ, XYX, XZY, and so on.

There is no one "simplest" or "right" set of Euler

angles. To derive a set of Euler angles you must

know which rotational sequence you are using and

stick to it.

In practice when Euler angles are needed; the

underlying rotation operations are done using

quaternions and are converted to Euler angles for the

task at hand.

3.3.3. Gimbals Lock
The coordination singularity in Euler’s angles is

commonly referred to as gimbals lock. A gimbal is a

physical device consisting of spherical concentric

hoops with pivots connecting adjacent hoops,

allowing them to rotate within each other (see Figure

1).

Figure 1. Gimbal with points of rotation indicated.

A gimbal is constructed by aligning three rings and

attaching them orthogonally. Gimbals are often seen

in gyroscopes used by the aeronautical industry.

As objects are rotated, they approach gimbal lock the

singularity will cause numerical ill-conditioning,

often evidented physically by the gimbal wiggling

madly around as it operates near the singularity. This

is one reason why the aerospace industry, early on,

switched to quaternions to represent orientation –

satellites, rockets and airplanes would have their

navigation gyro lock up and could cause them to

crash.

3.3.4. Interpolation
The major problem with Euler interpolation is that

they have problems while interpolating near gimbals

lock regions. When close to a gimbal lock

singularity the interpolation become jittery and noise

ridden; eventually becoming random and unstable as

it converges on the singularity.

If Euler angles are interpolated linearly the resulting

path will not take the shortest path between the

endpoints as it does in vector space [ALMA92].

3.4. Axis-Angle
The axis-angle is represented by a unit axis and angle

(ˆ,n ) pair. This axis-angle representation can easily

be converted to and from a matrix.

It is difficult to combine the axis-angle elements in

their native form; usually being converted to an

alternate representation for concatenation (e.g.,

matrices, quaternions).

3.4.1. Advantages
The greatest single advantage of the axis-angle

representation is that it directly represents the action

of rotation, while being straightforward and intuitive

to work with.

3.4.2. Disadvantages
We can renormalize the axis since it is a unit vector,

but numerical errors can still creep into the angle

portion.

Infinite number of angle choices (multiples of 2), so

two axis-angle pairs can still refer to the same

rotation but be different.

Axis-angle interpolation cannot be done using linear

interpolation of the four elements. Interpolating

between the four elements naively in this way does

not give the shortest path.

Interpolating the angle alone can introduce

discontinuities as the angle crosses from 0 to 2.

These ‘jumps’ are highly undesirable and can cause

anarchy with the interpolation and numerical

integration schemes.

3.5. Matrices
Representing a rigid transform using a matrix we

extend a 3x3 rotation matrix to include translation

information which makes it a 4x3 matrix. While a

4x3 matrix is the most efficient, on most occasions a

4x4 matrix is used because of availability.

The 3x3 part of the matrix consists of three

orthogonal column vectors which are of unit

magnitude.

A transform matrix can transform a vector coordinate

by simply matrix multiplication:

y Tx

where T is a transform matrix, x a vector coordinate

and y the transformed result.

If the position and basis vectors are known, the

transform matrix can trivially be produced, because

each of the columns in the 3x3 part of the matrix

represent the base vectors and the bottom row the

translation.

The combination of matrix elements is achieved

through simple multiplication. Matrices are not

commutative and therefore their matrix

representation of rigid body transforms is non-

commutative as well.

3.5.1. Advantages
Matrices are taught in linear algebra early on in

colleges so this makes them more familiar and

favourable. In addition, a great many algorithms

have been formulated and tested with matrices and so

people choose them instinctively first.

3.5.2. Disadvantages
While matrices might seem to be the utopia, they in-

fact can be found to have several problems.

Firstly, they take a minimum of 12 parameters to

represent a structure with only six DOF; if memory is

at a premium this can be undesirable.

Secondly, the rotational part of the matrix is

composed of orthogonal columns which can drift and

introduce unwanted scaling and sheering. We can re-

normalize the matrix using Gram-Schmidt method

[GILB86] but this can be computationally expensive.

Thirdly, interpolating between matrices is difficult.

The three columns forming the orthogonal axis

directions in the rotation part of the matrix do not

represent the vector space and cannot be interpolated.

Finally, it is difficult to visualize a matrix and the

axis-angle component about which it will rotate and

translate.

3.6. Method Summary
We have outlined and examined current methods for

representing a robust, practical and viable

hierarchical rigid body solution. We now follow on

from this by introducing and explaining how and

why dual-quaternions stand-out above these methods.

4. WHY DUAL-QUATERNIONS?
We use dual-quaternions as a tool for expressing and

analyzing the physical properties of rigid bodies.

Dual-quaternions can formulate a problem more

concisely, solve it more rapidly and in fewer steps,

present the result more plainly to others, be put into

practice with fewer lines of code and debugged

effortlessly. Furthermore, there is no loss of

efficiency; dual-quaternions can be just as efficient if

not more efficient than using matrix methods. In all,

there are several reasons for using dual-quaternions,

which we summarize:

 Singularity-free

 Un-ambiguous

 Shortest path interpolation

 Most efficient and compact form for

representing rigid transforms [SCHI11] - (3x4

matrix 12 floats compared to a dual-quaternion 8

floats)

 Unified representation of translation and rotation

 Can be integrated into a current system with

little coding effort

 The individual translation and rotational

information is combined to produce a single

invariant coordinate frame [GVMC98]

5. DUAL NUMBERS
Clifford [CLIF82] introduced dual numbers; similar

to complex numbers that consists of two parts known

as the real and complex component. Dual numbers

break the problem into two components and are

defined as:

z r d  with 2 0  but 0 

where  is the dual operator, r is the real part and d

the dual part. Similar to complex number theory,

where i is added to distinguish the real and complex

components, the dual operator  is used in the same

way.

The dual number theory can be extended to other

concepts, such as vectors and real numbers, but we

focus on their applicability in conjunction with

quaternions to represent rotation and translation

transforms.

5.1. Dual Number Arithmetic Operations
Dual numbers can perform the fundamental

arithmetic operations below:

Addition

() () () ()A A B B A B A Br d r d r r d d        

Multiplication

2()()

()

A A B B A B A B B A A B

A B A B B A

r d r d r r r d r d d d

r r r d r d

    



     

  

Division

2

2 2

() () ()

() () ()

()

()

A A A A B B

B B B B B B

A B B A A B

B

A B B A A B

B B

r d r d r d

r d r d r d

r r r d r d

r

r r r d r d

r r

  

  





  


  

 



 

Further reading on the subject of dual numbers is

presented by Gino [BERG09].

5.2. Dual Number Differentiation
Dual numbers differentiate in the same way as any

other vector using elementary calculus principles,

e.g.:

0

d () ()
() lim

dx x

x x x
x

x





 


s s
s

The derivative of a dual number is another dual

number. Remarkably, the dual operator’s condition
2 0  enables us to take advantage of Taylor series

to find the differentiable. Where we can see below,

if we substituting a dual number into Taylor series,

we get:

2 3

2

'() ''() '''()
() () () () ...

1! 2! 3!

'()
() 0 0 ... (, 0)

1!

() '()

A A A
A A A A A A

A
A A

A A A

f r f r f r
f r d f r d d d

f r
f r d as

f r f r d

   

 



     

     

 

Remarkably, the Taylor series result gives us an

exceptionally tidy answer; from this we use dual

number arithmetic and substitution to find the

solution to any differential.

The derivative also enables us to find the tangent of

an arbitrary point p on a given parametric curve that

is equal to the normalized dual part of the point p.

6. QUATERNIONS
Quaternions were introduced by Hamilton in 1866

[HAMI86] and have had a rollercoaster of a time with

acceptance. Quaternions are an extension of

complex number-theory to formulate a four

dimensional manifold. A quaternion is defined as:

()w x y z   q i j k

where w, x, y and z are the numerical values, while i,

j and k are the imaginary components.

The imaginary components properties:

2 2 2 1i j k   

and

,

,

,

ij k ji k

jk i kj i

ki j ik j

  

  

  

It is more common to represent the quaternion as two

components, the vector component (x, y and z) and

the scalar component (w).

(,)wq v

For further reading on the workings of quaternions

and their advantages I highly recommend reading

McDonalds [MCDO10] introductory paper for

students.

6.1. Quaternion Arithmetic Operations
Since we are combining quaternions with dual

number theory, we give the elementary quaternion

arithmetic operations below:

Scalar Multiplication

(,)s sw sq v

 where s is a scalar value.

Addition

1 2 1 2 1 2(,)w w   q q v v

Multiplication

1 2 1 2 1 2 1 2 2 1 1 2(, ())w w v v w w    q q v v v v

Conjugate

* (,)w q v

Magnitude

*|| ||q qq

For a unit quaternion, || || 1q . The unit quaternion

is used to represent a rotation of an angle , radians

about a unit axis n , in three-dimensional space:

(cos(), sin())
2 2

 
q n

6.2. Quaternion Interpolation
An extremely important quality of quaternions that

make them indispensable in animation systems is

their ability to interpolate two or more quaternions

smoothly and continuously. Shoemake [SHOE85],

presents an outstanding paper on using quaternion

curves for animating rotations. Furthermore, it

should be noted, the spherical linear interpolation

(SLERP) properties of quaternions are inherited by

dual-quaternions.

7. DUAL-QUATERNIONS
When quaternions are combined with dual number

theory, we get dual-quaternions which was presented

by Clifford in 1882 [CLIF82]. While the unit

quaternion only has the ability to represent rotation,

the unit dual-quaternion can represent both

translation and rotation. Each dual-quaternion

consists of eight elements or two quaternions. The

two quaternion elements are called the real part and

the dual part.

r d q q q

where
rq and

dq are quaternions. Combining the

algebra operations associated with quaternions with

the additional dual number  , we can form the dual-

quaternion arithmetic.

7.1. Dual-Quaternion Arithmetic

Operations
The elementary arithmetic operations necessary for

us to use dual-quaternions are:

Scalar Multiplication

r ds s s  q q q

Addition

1 2 1 2 1 2()r r d d     q q q q q q

Multiplication

1 2 1 2 1 2 1 2()r r r d d r   q q q q q q q q

Conjugate
* * *

r d  q q q

Magnitude
*|| ||q qq

Unit Condition

 || || 1q

* * 0r d d r q q q q

The unit dual-quaternion is our key concern as it can

represent any rigid rotational and translational

transformations.

The rigid rotational and translational information for

the unit dual-quaternion is:

1

2

r

d





q r

q t r

where r is a unit quaternion representing the rotation

and t is the quaternion describing the translation

represented by the vector (0,)tt .

The dual-quaternion can represent a pure rotation the

same as a quaternion by setting the dual part to zero.

[cos(), sin(), sin(), sin()][0,0,0,0]
2 2 2 2

r x y z

   
q n n n

To represent a pure translation with no rotation, the

real part can be set to an identity and the dual part

represents the translation.

[1,0,0,0][0, , ,]
2 2 2

yx z
t 

tt t
q

Combining the rotational and translational

transforms into a single unit quaternion to represent

a rotation followed by a translation we get:

t r q q q

This arithmetic operation defines how we transform a

point p, using a unit dual-quaternion:

*' p qpq

where *andq q represent a dual-quaternion

transform and its conjugate; while and 'p p

represent our point inserted into a quaternion and its

resulting transform.

8. PORTING EXISTING CODE TO

DUAL-QUATERNIONS
A dual-quaternion consists of two quaternions, but is

represented by a single variable Q. Systems that

have been constructed using separate translation and

rotation (vector for translation and quaternion for

rotation) in combination with matrices schemes are

easily modified to use dual-quaternions for spatial

information.

1. For each link, construct a dual-quaternion Q

from the rotation and translation information.

2. Real part of the quaternion is the rotation

quaternion r. The dual part is calculated by

multiplying the quaternion r and translation

component t, e.g.:

0.5 (0,)

Qr r

Qd t r





3. Combine transformations as you would matrices

using multiplication.

4. If necessary, for long chains, the dual-quaternion

should be re-normalized (to mend drift and

maintain a unit dual-quaternion).

5. To get the homogeneous transformation matrix,

convert the dual-quaternion by extracting the

translational and rotational components.

6. The extracted rotation quaternion r and vector

translation information is extracted using:

*2

r Qr

t Qd Qr





Dual-quaternion multiplication is more efficient than

matrix multiplication and can effortlessly be

converted back to a matrix when needed. Dual-

quaternions, unlike Euler angles, do not present

issues like "gimbal lock" and hence, are ideal for

complex articulated hierarchies.

9. COMPLEX CHARACTER

HIERARCHY FORWARD

KINEMATICS
The focus of our attention is with rigid hierarchies

having a large number of DOF. Humans have a

tremendous amount of flexibility which we emulate

and analyze using numerical and mathematical

models. Forward kinematics is the method of

concatenating local positions and rotations together

to give their global ones. The forward kinematic

method for concatenating transforms is the same for

dual-quaternions and matrices; which use simple

multiplication to propagate transforms between the

connected links.

For example, the concatenation of transforms with

matrices and dual-quaternions:

Matrix

03 0 1 2 3M M M M M

Dual-Quaternion

03 0 1 2 3q q q q q

where the subscript represents the transform, matrix

transform 0M corresponding to dual-quaternion

transform 0q .

10. EXPERIMENTAL RESULTS
We used traditional matrix methods during initial

character transformation experiments; e.g., inverse

kinematic (IK) and animation blending to

demonstrate their numerous problems. Matrix

methods are a popular choice and solutions to these

problems have been developed; we used some of

these engineering solutions. Of course, these

workarounds to these problems introduced an

additional computational cost. Furthermore, certain

circumventions to overcome a problem often

introduced errors in other areas. One such

engineering solution for reducing the impact of drift

and concatenation error was to renormalize the

matrices at each level (and at each update frame).

The error reduced skewing and scaling but

manifested itself in the ideal global end-link

orientations and positions being inaccurate.

To demonstrate the problems, we constructed

numerous test cases to emphasis them. We also

demonstrate and explore how dual-quaternions can

represent rigid body character based systems.

10.1. Rigid Body Transform Chains
We constructed a straightforward IK solver that

would follow a target end-effector. To mimic how a

character would move his arm or leg. The end-

effector had six DOF, which the IK solver had to

work with to meet its target goal.

Figure 2. Rigid body links attached in a single

hieararchy frame. (Draw ideal(red) and calculated

end-effector (green).

The hierarchy is composed of rigid links. Each link

held a rotation and translation in the form of a matrix

or dual-quaternion. For calculations, the axis-angle

and translation could be extracted and used when

needed. Local transforms were combined from the

root to the end-effectors. Concatenation of the

transforms throughout the levels was achieved by

multiplying parent transforms with current

transforms.

Certain orientation and translation configurations

produced errors in the output, shown in Figure 3.

These errors presented themselves as skewing and

scaling manifestations.

Figure 3. Artifact error when matrices representing

translation and orientation in linked hierarchies.

Early workarounds to amend the problem were to

repair the matrix at each level in the hierarchy by

ortho-normalizing the rotational component. While

ortho-normalizing the matrix reduced scaling and

skewing artifacts, alternative errors manifest

themselves in alternative forms.

Figure 4. Ortho-normalizing matrices in

hierarchies in an attempt to reduce errors.

Ortho-normalizing the rotational part of the

transform matrix between updates removed scaling

and skewing problems. The joints presented

discontinuity errors in the frames hierarchy (see

Figure 4). The ideal end-effectors position and

rotation were also different from the calculated one

using the refurbish matrices.

10.2. Biped Model
For our test character, we used a 16 link biped model,

shown in Figure 5. The character has 36 degrees of

freedom (DOF). Character rigs can produce

extremely non-linear motions due to their joint limits,

flexibility and elaborate arrangement of joints.

Figure 5. 16 link biped model used for testing.

Figure 5, shows the biped model in its starting stance

pose.

Buildup of computational inaccuracies will cause a

dual-quaternion to become of non-unit length; we fix

these errors by renormalization. In contrast,

repairing a non-orthogonal matrix is much more

complicated (see [SALA79]).

11. RESULTS
The dual-quaternion unifies the translation and

rotation into a single state variable. This single state

variable offers a robust, unambiguous,

computationally efficient way of representing rigid

transform.

The computational cost of combining matrices and

dual-quaternions:

Matrix4x4 : 64mult + 48adds

Matrix4x3 : 48mult + 32adds

DualQuaternion : 42mult + 38adds

In our tests, we found the dual-quaternion

multiplication method of transforms on average ten

percent faster compared matrix multiplication. We

did not take advantage of CPU architecture using

parallel methods such as SIMD which can further

improve speeds as demonstrated by Pallavi

[MEHU10] (both for matrices and quaternion

multiplication).

One major advantage we found when working with

dual-quaternions was the added advantage of

calculating angular and linear differences. When

working with pure matrix methods we needed to

convert the matrix to a quaternion to calculate

angular variations.

12. CONCLUSION AND FURTHER

WORK
The dual-quaternion model is an accurate,

computationally efficient, robust, and flexible

method of representing rigid transforms and should

not be overlooked. Implementing pre-programmed

dual-quaternion modules (e.g., multiplication and

normalization) enables the creation of more elegant

and clearer computer programs that are easier to

work with and control.

While matrices are the de-facto method used for the

majority of hierarchy based simulations, we have

shown that they can present certain problems which

are costly to avoid (e.g., renormalizing a matrix).

The problem and cost of drifting and normalizing is

less with dual-quaternions compared to matrix

methods. When dealing with rigid transforms the

dual-quaternion method shines through due to its

numerous advantages.

This paper has only provided a taste of the potential

advantages of dual-quaternions, and one can only

imagine the further future possibilities that they can

offer. For example, there is a deeper investigation of

the mathematical properties of dual-quaternions (e.g.,

zero divisions). There is also the concept of dual-

dual-quaternions (i.e., dual numbers within dual

numbers) and calculus for multi-parametric objects

for the reader to pursue if he desires.

13. APPENDIX

13.1. Dual-Quaternion Implementation

Class.
public class DualQuaternion_c
{
public Quaternion m_real;
public Quaternion m_dual;
public DualQuaternion_c()
{
 m_real = new Quaternion(0,0,0,1);
 m_dual = new Quaternion(0,0,0,0);
}
public DualQuaternion_c(Quaternion r, Quaternion d)
{
 m_real = Quaternion.Normalize(r);
 m_dual = d;
}

public DualQuaternion_c(Quaternion r, Vector3 t)
{
 m_real = Quaternion.Normalize(r);
 m_dual = (new Quaternion(t, 0) * m_real) * 0.5f;
}
public static float Dot(DualQuaternion_c a,
DualQuaternion_c b)
{
 return Quaternion.Dot(a.m_real, b.m_real);
}
public static DualQuaternion_c operator* (DualQuaternion_c
q, float scale)
{
 DualQuaternion_c ret = q;
 ret.m_real *= scale;
 ret.m_dual *= scale;
 return ret;
}
public static DualQuaternion_c Normalize(DualQuaternion_c q
)
{
 float mag = Quaternion.Dot(q.m_real, q.m_real);
 Debug_c.Assert(mag > 0.000001f);
 DualQuaternion_c ret = q;
 ret.m_real *= 1.0f / mag;
 ret.m_dual *= 1.0f / mag;
 return ret;
}
public static DualQuaternion_c operator + (DualQuaternion_c
lhs, DualQuaternion_c rhs)
{
 return new DualQuaternion_c(lhs.m_real + rhs.m_real,
 lhs.m_dual + rhs.m_dual);
}
// Multiplication order - left to right
public static DualQuaternion_c operator * (DualQuaternion_c
lhs, DualQuaternion_c rhs)
{
 return new DualQuaternion_c(rhs.m_real*lhs.m_real,
 rhs.m_dual*lhs.m_real + rhs.m_real*lhs.m_dual);
}
public static DualQuaternion_c Conjugate(DualQuaternion_c q
)
{
 return new DualQuaternion_c(Quaternion.Conjugate(
q.m_real), Quaternion.Conjugate(q.m_dual));
}
public static Quaternion GetRotation(DualQuaternion_c q)
{
 return q.m_real;
}
public static Vector3 GetTranslation(DualQuaternion_c q)
{
 Quaternion t = (q.m_dual * 2.0f) * Quaternion.Conjugate(
q.m_real);
 return new Vector3(t.X, t.Y, t.Z);
}
public static Matrix DualQuaternionToMatrix(
DualQuaternion_c q)
{
 q = DualQuaternion_c.Normalize(q);

 Matrix M = Matrix.Identity;
 float w = q.m_real.W;
 float x = q.m_real.X;
 float y = q.m_real.Y;
 float z = q.m_real.Z;

 // Extract rotational information
 M.M11 = w*w + x*x - y*y - z*z;
 M.M12 = 2*x*y + 2*w*z;
 M.M13 = 2*x*z - 2*w*y;

 M.M21 = 2*x*y - 2*w*z;
 M.M22 = w*w + y*y - x*x - z*z;
 M.M23 = 2*y*z + 2*w*x;

 M.M31 = 2*x*z + 2*w*y;
 M.M32 = 2*y*z - 2*w*x;
 M.M33 = w*w + z*z - x*x - y*y;

 // Extract translation information
 Quaternion t = (q.m_dual * 2.0f) * Quaternion.Conjugate(
q.m_real);
 M.M41 = t.X;
 M.M42 = t.Y;
 M.M43 = t.Z;
 return M;

}

#if false
public static void SimpleTest()
{
 DualQuaternion_c dq0 = new DualQuaternion_c(
Quaternion.CreateFromYawPitchRoll(1,2,3), new
Vector3(10,30,90));
 DualQuaternion_c dq1 = new DualQuaternion_c(
Quaternion.CreateFromYawPitchRoll(-1,3,2), new
Vector3(30,40, 190));
 DualQuaternion_c dq2 = new DualQuaternion_c(
Quaternion.CreateFromYawPitchRoll(2,3,1.5f), new
Vector3(5,20, 66));
 DualQuaternion_c dq = dq0 * dq1 * dq2;

 Matrix dqToMatrix =
DualQuaternion_c.DualQuaternionToMatrix(dq);

 Matrix m0 = Matrix.CreateFromYawPitchRoll(1,2,3) *
Matrix.CreateTranslation(10, 30, 90);
 Matrix m1 = Matrix.CreateFromYawPitchRoll(-1,3,2) *
Matrix.CreateTranslation(30, 40, 190);
 Matrix m2 = Matrix.CreateFromYawPitchRoll(2,3,1.5f) *
Matrix.CreateTranslation(5, 20, 66);
 Matrix m = m0 * m1 * m2;
}
#endif
} // End DualQuaternion_c

13.2. Novice Errors
There are a few things to look out for when

implementing a dual-quaternion class. Firstly,

ensure the multiplication order is correct and

remains consistent with matrices (i.e., left to right).

Secondly, always ensure that the dual-quaternions

remain normalized (i.e., unit-length).

14. REFERENCES
[CLIF82] W. Clifford, Mathematical Papers.

London: Macmillan, 1882.

[KCŽO08] L. Kavan, S. Collins, J. Žára, and C.

O’Sullivan, “Geometric skinning with

approximate dual quaternion blending,” ACM

Transactions on Graphics (TOG), vol. 27, no. 4,

p. 105, 2008.

[IVIV11] F. Z. Ivo and H. Ivo, “Spherical skinning

with dual quaternions and QTangents,” ACM

SIGGRAPH 2011 Talks, vol. 27, p. 4503, 2011.

[SELI11] J. Selig, “Rational interpolation of rigid-

body motions,” Advances in the Theory of

Control, Signals and Systems with Physical

Modeling, pp. 213–224, 2011.

[VAFU09] A. Vasilakis and I. Fudos, “Skeleton-

based rigid skinning for character animation,” in

Proc. of the Fourth International Conference on

Computer Graphics Theory and Applications,

2009, no. February, pp. 302–308.

[KMLX11] Y. Kuang, A. Mao, G. Li, and Y. Xiong,

“A strategy of real-time animation of clothed

body movement,” in Multimedia Technology

(ICMT), 2011 International Conference on, 2011,

pp. 4793–4797.

[PPAF10] H. L. Pham, V. Perdereau, B. V. Adorno,

and P. Fraisse, “Position and orientation control

of robot manipulators using dual quaternion

feedback,” in Intelligent Robots and Systems

(IROS), 2010 IEEE/RSJ International Conference

on, 2010, pp. 658–663.

[SCHI11] M. Schilling, “Universally manipulable

body models — dual quaternion representations

in layered and dynamic MMCs,” Autonomous

Robots, 2011.

[GVMC98] Q. Ge, A. Varshney, J. P. Menon, and C.

F. Chang, “Double quaternions for motion

interpolation,” in Proceedings of the ASME

Design Engineering Technical Conference, 1998.

[LIWC10] Y. Lin, H. Wang, and Y. Chiang,

“Estimation of relative orientation using dual

quaternion,” System Science and, no. 2, pp. 413-

416, 2010.

[PEMC04] A. Perez and J. M. McCarthy, “Dual

quaternion synthesis of constrained robotic

systems,” Journal of Mechanical Design, vol.

126, p. 425, 2004.

[ALMA92] W. Alan and W. Mart, Advanced

Animation and Rendering Techniques: Theory

and Practice. Adison-Wesley, 1992.

[GILB86] S. Gilbert, Introduction to Applied

Mathematics. Wellesley-Cambridge Press, 1986.

[BERG09] G. van den Bergen, “Dual Numbers:

Simple Math, Easy C++ Coding, and Lots of

Tricks,” GDC Europe, 2009. [Online]. Available:

www.gdcvault.com/play/10103/Dual-Numbers-

Simple-Math-Easy.

[HAMI86] W. R. Hamilton, Elements of

Quaternions. London: , 1886.

[MCDO10] J. McDonald, “Teaching Quaternions is

not Complex,” Computer Graphics Forum, vol.

29, no. 8, pp. 2447-2455, Dec. 2010.

[SHOE85] K. Shoemake, “Animating rotation with

quaternion curves,” ACM SIGGRAPH computer

graphics, 1985.

[SALA79] E. Salamin, “Application of quaternions

to computation with rotations,” Internal Report,

Stanford University, Stanford, CA, vol. 1, 1979.

[MEHU10] P. Mehrotra and R. Hubbard, “Benefits

of Intel® Advanced Vector Extensions For

Quaternion Spherical Linear Interpolation

(Slerp),” 2010. [Online]. Available:

http://software.intel.com/en-us/articles/benefits-

of-intel-advanced-vector-extensions-for-

quaternion-spherical-liner-interpolation-slerp/.

